Subnormal operators, cyclic vectors and reductivity
Studia Mathematica, Tome 216 (2013) no. 2, pp. 97-109

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Two characterizations of the reductivity of a cyclic normal operator in Hilbert space are proved: the equality of the sets of cyclic and $^*$-cyclic vectors, and the equality $L^2(\mu )={\bf P}^2(\mu )$ for every measure $\mu $ equivalent to the scalar-valued spectral measure of the operator. A cyclic subnormal operator is reductive if and only if the first condition is satisfied. Several consequences are also presented.
DOI : 10.4064/sm216-2-1
Keywords: characterizations reductivity cyclic normal operator hilbert space proved equality sets cyclic * cyclic vectors equality every measure equivalent scalar valued spectral measure operator cyclic subnormal operator reductive only first condition satisfied several consequences presented

Béla Nagy 1

1 Department of Analysis Institute of Mathematics Budapest University of Technology and Economics H-1516 Budapest, Hungary
@article{10_4064_sm216_2_1,
     author = {B\'ela Nagy},
     title = {Subnormal operators, cyclic vectors and reductivity},
     journal = {Studia Mathematica},
     pages = {97--109},
     publisher = {mathdoc},
     volume = {216},
     number = {2},
     year = {2013},
     doi = {10.4064/sm216-2-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm216-2-1/}
}
TY  - JOUR
AU  - Béla Nagy
TI  - Subnormal operators, cyclic vectors and reductivity
JO  - Studia Mathematica
PY  - 2013
SP  - 97
EP  - 109
VL  - 216
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm216-2-1/
DO  - 10.4064/sm216-2-1
LA  - en
ID  - 10_4064_sm216_2_1
ER  - 
%0 Journal Article
%A Béla Nagy
%T Subnormal operators, cyclic vectors and reductivity
%J Studia Mathematica
%D 2013
%P 97-109
%V 216
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm216-2-1/
%R 10.4064/sm216-2-1
%G en
%F 10_4064_sm216_2_1
Béla Nagy. Subnormal operators, cyclic vectors and reductivity. Studia Mathematica, Tome 216 (2013) no. 2, pp. 97-109. doi: 10.4064/sm216-2-1

Cité par Sources :