2-summing multiplication operators
Studia Mathematica, Tome 216 (2013) no. 1, pp. 77-96
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $1\leq p\infty $, $\mathcal {X}=(X_{n}) _{n\in \mathbb {N}}$ be a sequence of Banach spaces and $l_{p}(\mathcal {X}) $ the coresponding vector valued sequence space. Let $\mathcal {X}=( X_{n}) _{n\in \mathbb {N}}$, $\mathcal {Y}=(Y_{n}) _{n\in \mathbb {N}}$ be two sequences of Banach spaces, $\mathcal {V}=( V_{n}) _{n\in \mathbb {N}}$, $V_{n}:X_{n}\rightarrow Y_{n}$, a sequence of bounded linear operators and $1\leq p,q\infty $. We define the multiplication operator $M_{\mathcal {V}}:l_{p}(\mathcal {X}) \rightarrow l_{q}(\mathcal {Y}) $ by $M_{\mathcal {V}}( (x_{n}) _{n\in \mathbb {N}}) :=(V_{n}( x_{n})) _{n\in \mathbb {N}}$. We give necessary and sufficient conditions for $M_{\mathcal {V}}$ to be $2$-summing when $(p,q) $ is one of the couples $(1,2) $, $(2,1) $, $(2,2) $, $( 1,1) $, $(p,1) $, $(p,2) $, $(2,p) $, $(1,p) $, $(p,q) $; in the last case $1 p 2$, $1 q \infty $.
Keywords:
leq infty mathcal mathbb sequence banach spaces mathcal coresponding vector valued sequence space mathcal mathbb mathcal mathbb sequences banach spaces mathcal mathbb rightarrow sequence bounded linear operators leq infty define multiplication operator mathcal mathcal rightarrow mathcal mathcal mathbb mathbb necessary sufficient conditions mathcal summing couples infty
Affiliations des auteurs :
Dumitru Popa 1
@article{10_4064_sm216_1_6,
author = {Dumitru Popa},
title = {2-summing multiplication operators},
journal = {Studia Mathematica},
pages = {77--96},
year = {2013},
volume = {216},
number = {1},
doi = {10.4064/sm216-1-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm216-1-6/}
}
Dumitru Popa. 2-summing multiplication operators. Studia Mathematica, Tome 216 (2013) no. 1, pp. 77-96. doi: 10.4064/sm216-1-6
Cité par Sources :