2-summing multiplication operators
Studia Mathematica, Tome 216 (2013) no. 1, pp. 77-96 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

Let $1\leq p\infty $, $\mathcal {X}=(X_{n}) _{n\in \mathbb {N}}$ be a sequence of Banach spaces and $l_{p}(\mathcal {X}) $ the coresponding vector valued sequence space. Let $\mathcal {X}=( X_{n}) _{n\in \mathbb {N}}$, $\mathcal {Y}=(Y_{n}) _{n\in \mathbb {N}}$ be two sequences of Banach spaces, $\mathcal {V}=( V_{n}) _{n\in \mathbb {N}}$, $V_{n}:X_{n}\rightarrow Y_{n}$, a sequence of bounded linear operators and $1\leq p,q\infty $. We define the multiplication operator $M_{\mathcal {V}}:l_{p}(\mathcal {X}) \rightarrow l_{q}(\mathcal {Y}) $ by $M_{\mathcal {V}}( (x_{n}) _{n\in \mathbb {N}}) :=(V_{n}( x_{n})) _{n\in \mathbb {N}}$. We give necessary and sufficient conditions for $M_{\mathcal {V}}$ to be $2$-summing when $(p,q) $ is one of the couples $(1,2) $, $(2,1) $, $(2,2) $, $( 1,1) $, $(p,1) $, $(p,2) $, $(2,p) $, $(1,p) $, $(p,q) $; in the last case $1 p 2$, $1 q \infty $.
DOI : 10.4064/sm216-1-6
Keywords: leq infty mathcal mathbb sequence banach spaces mathcal coresponding vector valued sequence space mathcal mathbb mathcal mathbb sequences banach spaces mathcal mathbb rightarrow sequence bounded linear operators leq infty define multiplication operator mathcal mathcal rightarrow mathcal mathcal mathbb mathbb necessary sufficient conditions mathcal summing couples infty

Dumitru Popa 1

1 Department of Mathematics Ovidius University of Constanţa Bd. Mamaia 124 900527 Constanţa, Romania
@article{10_4064_sm216_1_6,
     author = {Dumitru Popa},
     title = {2-summing multiplication operators},
     journal = {Studia Mathematica},
     pages = {77--96},
     year = {2013},
     volume = {216},
     number = {1},
     doi = {10.4064/sm216-1-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm216-1-6/}
}
TY  - JOUR
AU  - Dumitru Popa
TI  - 2-summing multiplication operators
JO  - Studia Mathematica
PY  - 2013
SP  - 77
EP  - 96
VL  - 216
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm216-1-6/
DO  - 10.4064/sm216-1-6
LA  - en
ID  - 10_4064_sm216_1_6
ER  - 
%0 Journal Article
%A Dumitru Popa
%T 2-summing multiplication operators
%J Studia Mathematica
%D 2013
%P 77-96
%V 216
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm216-1-6/
%R 10.4064/sm216-1-6
%G en
%F 10_4064_sm216_1_6
Dumitru Popa. 2-summing multiplication operators. Studia Mathematica, Tome 216 (2013) no. 1, pp. 77-96. doi: 10.4064/sm216-1-6

Cité par Sources :