Matrix subspaces of $L_1$
Studia Mathematica, Tome 215 (2013) no. 3, pp. 281-285 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

If $E=\{e_i\}$ and $F=\{f_i\}$ are two 1-unconditional basic sequences in $L_1$ with $E$ $r$-concave and $F$ $p$-convex, for some $1\le r p\le 2$, then the space of matrices $\{a_{i,j}\}$ with norm $ \|\{a_{i,j}\}\|_{E(F)}=\left\|\sum_k \|\sum_l a_{k,l}f_l\|e_k\right\| $ embeds into $L_1$. This generalizes a recent result of Prochno and Schütt.
DOI : 10.4064/sm215-3-5
Keywords: unconditional basic sequences r concave p convex space matrices norm sum sum l right embeds generalizes recent result prochno sch

Gideon Schechtman 1

1 Department of Mathematics Weizmann Institute of Science Rehovot, Israel
@article{10_4064_sm215_3_5,
     author = {Gideon Schechtman},
     title = {Matrix subspaces of $L_1$},
     journal = {Studia Mathematica},
     pages = {281--285},
     year = {2013},
     volume = {215},
     number = {3},
     doi = {10.4064/sm215-3-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm215-3-5/}
}
TY  - JOUR
AU  - Gideon Schechtman
TI  - Matrix subspaces of $L_1$
JO  - Studia Mathematica
PY  - 2013
SP  - 281
EP  - 285
VL  - 215
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm215-3-5/
DO  - 10.4064/sm215-3-5
LA  - en
ID  - 10_4064_sm215_3_5
ER  - 
%0 Journal Article
%A Gideon Schechtman
%T Matrix subspaces of $L_1$
%J Studia Mathematica
%D 2013
%P 281-285
%V 215
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm215-3-5/
%R 10.4064/sm215-3-5
%G en
%F 10_4064_sm215_3_5
Gideon Schechtman. Matrix subspaces of $L_1$. Studia Mathematica, Tome 215 (2013) no. 3, pp. 281-285. doi: 10.4064/sm215-3-5

Cité par Sources :