Matrix subspaces of $L_1$
Studia Mathematica, Tome 215 (2013) no. 3, pp. 281-285
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
If $E=\{e_i\}$ and $F=\{f_i\}$ are two 1-unconditional basic sequences in $L_1$ with $E$ $r$-concave and $F$ $p$-convex, for some $1\le r p\le 2$, then the space of matrices $\{a_{i,j}\}$ with norm
$
\|\{a_{i,j}\}\|_{E(F)}=\left\|\sum_k \|\sum_l a_{k,l}f_l\|e_k\right\|
$
embeds into $L_1$. This generalizes a recent result of Prochno and Schütt.
Keywords:
unconditional basic sequences r concave p convex space matrices norm sum sum l right embeds generalizes recent result prochno sch
Affiliations des auteurs :
Gideon Schechtman 1
@article{10_4064_sm215_3_5,
author = {Gideon Schechtman},
title = {Matrix subspaces of $L_1$},
journal = {Studia Mathematica},
pages = {281--285},
year = {2013},
volume = {215},
number = {3},
doi = {10.4064/sm215-3-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm215-3-5/}
}
Gideon Schechtman. Matrix subspaces of $L_1$. Studia Mathematica, Tome 215 (2013) no. 3, pp. 281-285. doi: 10.4064/sm215-3-5
Cité par Sources :