IP-Dirichlet measures and IP-rigid dynamical systems: an approach via generalized Riesz products
Studia Mathematica, Tome 215 (2013) no. 3, pp. 237-259 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

If $(n_{k})_{k\ge 1}$ is a strictly increasing sequence of integers, a continuous probability measure $\sigma $ on the unit circle $\mathbb T$ is said to be IP-Dirichlet with respect to $(n_{k})_{k\ge 1}$ if $\hat{\sigma }(\sum_{k\in F}n_{k})\to 1 $ as $F$ runs over all non-empty finite subsets $F$ of $\mathbb N$ and the minimum of $F$ tends to infinity. IP-Dirichlet measures and their connections with IP-rigid dynamical systems have recently been investigated by Aaronson, Hosseini and Lemańczyk. We simplify and generalize some of their results, using an approach involving generalized Riesz products.
DOI : 10.4064/sm215-3-3
Keywords: strictly increasing sequence integers continuous probability measure sigma unit circle mathbb said ip dirichlet respect hat sigma sum runs non empty finite subsets mathbb minimum tends infinity ip dirichlet measures their connections ip rigid dynamical systems have recently investigated aaronson hosseini lema czyk simplify generalize their results using approach involving generalized riesz products

Sophie Grivaux 1

1 CNRS, Laboratoire Paul Painlevé, UMR 8524 Université Lille 1 Cité Scientifique 59655 Villeneuve d'Ascq Cedex, France
@article{10_4064_sm215_3_3,
     author = {Sophie Grivaux},
     title = {IP-Dirichlet measures and {IP-rigid} dynamical systems: an approach via generalized {Riesz} products},
     journal = {Studia Mathematica},
     pages = {237--259},
     year = {2013},
     volume = {215},
     number = {3},
     doi = {10.4064/sm215-3-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm215-3-3/}
}
TY  - JOUR
AU  - Sophie Grivaux
TI  - IP-Dirichlet measures and IP-rigid dynamical systems: an approach via generalized Riesz products
JO  - Studia Mathematica
PY  - 2013
SP  - 237
EP  - 259
VL  - 215
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm215-3-3/
DO  - 10.4064/sm215-3-3
LA  - en
ID  - 10_4064_sm215_3_3
ER  - 
%0 Journal Article
%A Sophie Grivaux
%T IP-Dirichlet measures and IP-rigid dynamical systems: an approach via generalized Riesz products
%J Studia Mathematica
%D 2013
%P 237-259
%V 215
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm215-3-3/
%R 10.4064/sm215-3-3
%G en
%F 10_4064_sm215_3_3
Sophie Grivaux. IP-Dirichlet measures and IP-rigid dynamical systems: an approach via generalized Riesz products. Studia Mathematica, Tome 215 (2013) no. 3, pp. 237-259. doi: 10.4064/sm215-3-3

Cité par Sources :