IP-Dirichlet measures and IP-rigid dynamical systems: an approach via generalized Riesz products
Studia Mathematica, Tome 215 (2013) no. 3, pp. 237-259
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
If $(n_{k})_{k\ge 1}$ is a strictly increasing sequence of integers, a continuous probability measure $\sigma $ on the unit circle $\mathbb T$ is said to be IP-Dirichlet with respect to $(n_{k})_{k\ge 1}$ if $\hat{\sigma }(\sum_{k\in F}n_{k})\to 1 $ as $F$ runs over all non-empty finite subsets $F$ of $\mathbb N$ and the minimum of $F$ tends to infinity. IP-Dirichlet measures and their connections with IP-rigid dynamical systems have recently been investigated by Aaronson, Hosseini and Lemańczyk. We simplify and generalize some of their results, using an approach involving generalized Riesz products.
Keywords:
strictly increasing sequence integers continuous probability measure sigma unit circle mathbb said ip dirichlet respect hat sigma sum runs non empty finite subsets mathbb minimum tends infinity ip dirichlet measures their connections ip rigid dynamical systems have recently investigated aaronson hosseini lema czyk simplify generalize their results using approach involving generalized riesz products
Affiliations des auteurs :
Sophie Grivaux 1
@article{10_4064_sm215_3_3,
author = {Sophie Grivaux},
title = {IP-Dirichlet measures and {IP-rigid} dynamical systems: an approach via generalized {Riesz} products},
journal = {Studia Mathematica},
pages = {237--259},
year = {2013},
volume = {215},
number = {3},
doi = {10.4064/sm215-3-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm215-3-3/}
}
TY - JOUR AU - Sophie Grivaux TI - IP-Dirichlet measures and IP-rigid dynamical systems: an approach via generalized Riesz products JO - Studia Mathematica PY - 2013 SP - 237 EP - 259 VL - 215 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm215-3-3/ DO - 10.4064/sm215-3-3 LA - en ID - 10_4064_sm215_3_3 ER -
Sophie Grivaux. IP-Dirichlet measures and IP-rigid dynamical systems: an approach via generalized Riesz products. Studia Mathematica, Tome 215 (2013) no. 3, pp. 237-259. doi: 10.4064/sm215-3-3
Cité par Sources :