Explicit representation of compact linear operators
in Banach spaces via polar sets
Studia Mathematica, Tome 214 (2013) no. 3, pp. 265-278
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We consider a compact linear map $T$ acting between Banach spaces both of which are uniformly convex and uniformly smooth; it is supposed that $T$ has trivial kernel and range dense in the target space. It is shown that if the Gelfand numbers of $T$ decay sufficiently quickly, then the action of $T$ is given by a series with calculable coefficients. This provides a Banach space version of the well-known Hilbert space result of E. Schmidt.
Keywords:
consider compact linear map acting between banach spaces which uniformly convex uniformly smooth supposed has trivial kernel range dense target space shown gelfand numbers decay sufficiently quickly action given series calculable coefficients provides banach space version well known hilbert space result schmidt
Affiliations des auteurs :
David E. Edmunds 1 ; Jan Lang 2
@article{10_4064_sm214_3_5,
author = {David E. Edmunds and Jan Lang},
title = {Explicit representation of compact linear operators
in {Banach} spaces via polar sets},
journal = {Studia Mathematica},
pages = {265--278},
year = {2013},
volume = {214},
number = {3},
doi = {10.4064/sm214-3-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm214-3-5/}
}
TY - JOUR AU - David E. Edmunds AU - Jan Lang TI - Explicit representation of compact linear operators in Banach spaces via polar sets JO - Studia Mathematica PY - 2013 SP - 265 EP - 278 VL - 214 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm214-3-5/ DO - 10.4064/sm214-3-5 LA - en ID - 10_4064_sm214_3_5 ER -
David E. Edmunds; Jan Lang. Explicit representation of compact linear operators in Banach spaces via polar sets. Studia Mathematica, Tome 214 (2013) no. 3, pp. 265-278. doi: 10.4064/sm214-3-5
Cité par Sources :