New limit theorems related to free multiplicative convolution
Studia Mathematica, Tome 214 (2013) no. 3, pp. 251-264
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $\boxplus $, $\boxtimes $, and $\uplus $ be the free additive, free multiplicative, and boolean additive convolutions, respectively. For a probability measure $\mu $ on $[0,\infty )$ with finite second moment, we find a scaling limit of $(\mu ^{\boxtimes N})^{\boxplus N}$ as $N$ goes to infinity. The $\mathcal {R}$-transform of its limit distribution can be represented by Lambert's $W$-function. From this, we deduce that the limiting distribution is freely infinitely divisible, like the lognormal distribution in the classical case. We also show a similar limit theorem by replacing free additive convolution with boolean convolution.
Keywords:
boxplus boxtimes uplus additive multiplicative boolean additive convolutions respectively probability measure infty finite second moment scaling limit boxtimes boxplus goes infinity mathcal transform its limit distribution represented lamberts w function deduce limiting distribution freely infinitely divisible lognormal distribution classical similar limit theorem replacing additive convolution boolean convolution
Affiliations des auteurs :
Noriyoshi Sakuma 1 ; Hiroaki Yoshida 2
@article{10_4064_sm214_3_4,
author = {Noriyoshi Sakuma and Hiroaki Yoshida},
title = {New limit theorems related to free multiplicative convolution},
journal = {Studia Mathematica},
pages = {251--264},
year = {2013},
volume = {214},
number = {3},
doi = {10.4064/sm214-3-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm214-3-4/}
}
TY - JOUR AU - Noriyoshi Sakuma AU - Hiroaki Yoshida TI - New limit theorems related to free multiplicative convolution JO - Studia Mathematica PY - 2013 SP - 251 EP - 264 VL - 214 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm214-3-4/ DO - 10.4064/sm214-3-4 LA - en ID - 10_4064_sm214_3_4 ER -
Noriyoshi Sakuma; Hiroaki Yoshida. New limit theorems related to free multiplicative convolution. Studia Mathematica, Tome 214 (2013) no. 3, pp. 251-264. doi: 10.4064/sm214-3-4
Cité par Sources :