The classical subspaces of the projective
tensor products of $\ell _{p}$ and $C(\alpha )$ spaces, $\alpha \omega _{1}$
Studia Mathematica, Tome 214 (2013) no. 3, pp. 237-250
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We completely determine the
$\ell_{q}$ and $C(K)$ spaces which are
isomorphic to a subspace of $\def\widot{\mathbin{\widehat{\otimes}}}\ell_{p} \widot_{\pi} C(\alpha)$, the projective tensor product of the
classical $\ell_{p}$ space,
$1 \leq p \infty$, and the
space $C(\alpha)$ of all scalar valued continuous functions defined on the interval of ordinal numbers
$[1, \alpha]$, $\alpha \omega_{1}$. In order to do this, we extend a
result of A. Tong concerning diagonal block matrices
representing operators from $\ell_{p}$ to $\ell_{1}$, $1 \leq p \infty$.The first main theorem is an
extension of a result of E. Oja and states that the only $\ell_{q}$
space which is isomorphic to a subspace of $\def\widot{\mathbin{\widehat{\otimes}}}\ell_{p}
\widot_{\pi} C(\alpha)$ with $1 \leq p\leq q \infty$
and $\omega \leq \alpha \omega_{1}$ is $\ell_{p}$.
The second main theorem concerning $C(K)$ spaces improves
a result of Bessaga and Pełczyński which allows us to
classify, up to isomorphism,
the separable spaces $\mathcal{N}(X, Y)$ of nuclear
operators, where $X$ and $Y$ are direct sums of $\ell_{p}$ and $C(K)$ spaces.
More precisely, we prove the
following cancellation law for separable Banach spaces. Suppose that
$K_{1}$ and $K_{3}$ are finite or countable
compact metric spaces of
the same cardinality and $1
(a) $\mathcal{N}(\ell_{p} \oplus C(K_{1}), \ell_{q} \oplus C(K_{2}))$ and
$\mathcal{N}(\ell_{p} \oplus C(K_{3}), \ell_{q} \oplus C(K_{4}))$ are isomorphic.(b) $C(K_{2})$ is isomorphic to $C(K_{4})$.
Keywords:
completely determine ell spaces which isomorphic subspace def widot mathbin widehat otimes ell widot alpha projective tensor product classical ell space leq infty space alpha scalar valued continuous functions defined interval ordinal numbers alpha alpha omega order extend result nbsp tong concerning diagonal block matrices representing operators ell ell leq infty first main theorem extension result oja states only ell space which isomorphic subspace def widot mathbin widehat otimes ell widot alpha leq leq infty omega leq alpha omega ell second main theorem concerning spaces improves result bessaga czy ski which allows classify isomorphism separable spaces mathcal nuclear operators where direct sums ell spaces precisely prove following cancellation law separable banach spaces suppose finite countable compact metric spaces cardinality infty infinite compact metric spaces following statements equivalent mathcal ell oplus ell oplus mathcal ell oplus ell oplus isomorphic isomorphic
Affiliations des auteurs :
Elói Medina Galego 1 ; Christian Samuel 2
@article{10_4064_sm214_3_3,
author = {El\'oi Medina Galego and Christian Samuel},
title = {The classical subspaces of the projective
tensor products of $\ell _{p}$ and $C(\alpha )$ spaces, $\alpha < \omega _{1}$},
journal = {Studia Mathematica},
pages = {237--250},
year = {2013},
volume = {214},
number = {3},
doi = {10.4064/sm214-3-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm214-3-3/}
}
TY - JOUR
AU - Elói Medina Galego
AU - Christian Samuel
TI - The classical subspaces of the projective
tensor products of $\ell _{p}$ and $C(\alpha )$ spaces, $\alpha < \omega _{1}$
JO - Studia Mathematica
PY - 2013
SP - 237
EP - 250
VL - 214
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm214-3-3/
DO - 10.4064/sm214-3-3
LA - en
ID - 10_4064_sm214_3_3
ER -
%0 Journal Article
%A Elói Medina Galego
%A Christian Samuel
%T The classical subspaces of the projective
tensor products of $\ell _{p}$ and $C(\alpha )$ spaces, $\alpha < \omega _{1}$
%J Studia Mathematica
%D 2013
%P 237-250
%V 214
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm214-3-3/
%R 10.4064/sm214-3-3
%G en
%F 10_4064_sm214_3_3
Elói Medina Galego; Christian Samuel. The classical subspaces of the projective
tensor products of $\ell _{p}$ and $C(\alpha )$ spaces, $\alpha < \omega _{1}$. Studia Mathematica, Tome 214 (2013) no. 3, pp. 237-250. doi: 10.4064/sm214-3-3
Cité par Sources :