An approximation property with respect to an operator ideal
Studia Mathematica, Tome 214 (2013) no. 1, pp. 67-75
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Given an operator ideal ${\mathcal A}$, we say that a Banach space $X$ has the approximation property with respect to ${\mathcal A}$ if $T$ belongs to $\overline {\{S\circ T: S\in {\mathcal F}(X)\}}^{\tau _c}$ for every Banach space $Y$ and every $T\in {\mathcal A}(Y,X)$, $\tau _c$ being the topology of uniform convergence on compact sets. We present several characterizations of this type of approximation property. It is shown that some of the existing approximation properties in the literature may be included in this setting.
Keywords:
given operator ideal mathcal say banach space has approximation property respect mathcal belongs overline circ mathcal tau every banach space every mathcal tau being topology uniform convergence compact sets present several characterizations type approximation property shown existing approximation properties literature may included setting
Affiliations des auteurs :
Juan Manuel Delgado 1 ; Cándido Piñeiro 2
@article{10_4064_sm214_1_4,
author = {Juan Manuel Delgado and C\'andido Pi\~neiro},
title = {An approximation property with respect to an operator ideal},
journal = {Studia Mathematica},
pages = {67--75},
publisher = {mathdoc},
volume = {214},
number = {1},
year = {2013},
doi = {10.4064/sm214-1-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm214-1-4/}
}
TY - JOUR AU - Juan Manuel Delgado AU - Cándido Piñeiro TI - An approximation property with respect to an operator ideal JO - Studia Mathematica PY - 2013 SP - 67 EP - 75 VL - 214 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm214-1-4/ DO - 10.4064/sm214-1-4 LA - en ID - 10_4064_sm214_1_4 ER -
Juan Manuel Delgado; Cándido Piñeiro. An approximation property with respect to an operator ideal. Studia Mathematica, Tome 214 (2013) no. 1, pp. 67-75. doi: 10.4064/sm214-1-4
Cité par Sources :