When is the Haar measure a Pietsch measure
for nonlinear mappings?
Studia Mathematica, Tome 213 (2012) no. 3, pp. 275-287
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We show that, as in the linear case, the normalized Haar measure on a compact topological group $G$ is a Pietsch measure for nonlinear summing mappings on closed translation invariant subspaces of $C(G)$. This answers a question posed to the authors by J. Diestel. We also show that our result applies to several well-studied classes of nonlinear summing mappings. In the final section some problems are proposed.
Keywords:
linear normalized haar measure compact topological group pietsch measure nonlinear summing mappings closed translation invariant subspaces answers question posed authors diestel result applies several well studied classes nonlinear summing mappings final section problems proposed
Affiliations des auteurs :
Geraldo Botelho 1 ; Daniel Pellegrino 2 ; Pilar Rueda 3 ; Joedson Santos 4 ; Juan Benigno Seoane-Sepúlveda 5
@article{10_4064_sm213_3_5,
author = {Geraldo Botelho and Daniel Pellegrino and Pilar Rueda and Joedson Santos and Juan Benigno Seoane-Sep\'ulveda},
title = {When is the {Haar} measure a {Pietsch} measure
for nonlinear mappings?},
journal = {Studia Mathematica},
pages = {275--287},
year = {2012},
volume = {213},
number = {3},
doi = {10.4064/sm213-3-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm213-3-5/}
}
TY - JOUR AU - Geraldo Botelho AU - Daniel Pellegrino AU - Pilar Rueda AU - Joedson Santos AU - Juan Benigno Seoane-Sepúlveda TI - When is the Haar measure a Pietsch measure for nonlinear mappings? JO - Studia Mathematica PY - 2012 SP - 275 EP - 287 VL - 213 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm213-3-5/ DO - 10.4064/sm213-3-5 LA - en ID - 10_4064_sm213_3_5 ER -
%0 Journal Article %A Geraldo Botelho %A Daniel Pellegrino %A Pilar Rueda %A Joedson Santos %A Juan Benigno Seoane-Sepúlveda %T When is the Haar measure a Pietsch measure for nonlinear mappings? %J Studia Mathematica %D 2012 %P 275-287 %V 213 %N 3 %U http://geodesic.mathdoc.fr/articles/10.4064/sm213-3-5/ %R 10.4064/sm213-3-5 %G en %F 10_4064_sm213_3_5
Geraldo Botelho; Daniel Pellegrino; Pilar Rueda; Joedson Santos; Juan Benigno Seoane-Sepúlveda. When is the Haar measure a Pietsch measure for nonlinear mappings?. Studia Mathematica, Tome 213 (2012) no. 3, pp. 275-287. doi: 10.4064/sm213-3-5
Cité par Sources :