On a Weyl–von Neumann type theorem for
antilinear self-adjoint operators
Studia Mathematica, Tome 213 (2012) no. 3, pp. 191-205
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Antilinear operators on a complex Hilbert space arise in various contexts in mathematical physics. In this paper, an analogue of the Weyl–von Neumann theorem for antilinear self-adjoint operators is proved, i.e. that an antilinear self-adjoint operator is the sum of a diagonalizable operator and of a compact operator with arbitrarily small Schatten $p$-norm. On the way, we discuss conjugations and their properties. A spectral integral representation for antilinear self-adjoint operators is constructed.
Keywords:
antilinear operators complex hilbert space arise various contexts mathematical physics paper analogue weyl von neumann theorem antilinear self adjoint operators proved antilinear self adjoint operator sum diagonalizable operator compact operator arbitrarily small schatten p norm discuss conjugations their properties spectral integral representation antilinear self adjoint operators constructed
Affiliations des auteurs :
Santtu Ruotsalainen 1
@article{10_4064_sm213_3_1,
author = {Santtu Ruotsalainen},
title = {On a {Weyl{\textendash}von} {Neumann} type theorem for
antilinear self-adjoint operators},
journal = {Studia Mathematica},
pages = {191--205},
year = {2012},
volume = {213},
number = {3},
doi = {10.4064/sm213-3-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm213-3-1/}
}
Santtu Ruotsalainen. On a Weyl–von Neumann type theorem for antilinear self-adjoint operators. Studia Mathematica, Tome 213 (2012) no. 3, pp. 191-205. doi: 10.4064/sm213-3-1
Cité par Sources :