A counter-example in singular integral theory
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 213 (2012) no. 2, pp. 157-167
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              An improvement of a lemma of Calderón and Zygmund involving singular spherical
harmonic kernels is obtained and a counter-example is given to show that this
result is best possible. In a particular case when the singularity
is $O(\vert \!\log r\vert)$, let $f\in C^{1}(\mathbb{R}^{N}\backslash\{ 0\})$ and suppose $f$
vanishes outside of a compact subset of $\mathbb{R}^{N},N\geq2.$ Also, let
$k(x) $ be a Calderón–Zygmund kernel of spherical harmonic
type. Suppose $f(x) =O(\vert\! \log r\vert)$ as $r\rightarrow0$ in the $L^{p}$-sense. Set
\[
F(x) =\int_{\mathbb{R}^{N}}k(x-y) f(y)\, dy \quad \forall x\in\mathbb{R}^{N}\backslash\{0\}.
\]
Then $F(x) ={O}(\log^{2}r) $ as
$r\rightarrow0$ in the $L^{p}$-sense, $1 p \infty.$ A counter-example is
given in $\mathbb{R}^{2}$ where the increased singularity ${O}(
\log^{2}r) $ actually takes place. This is different from the situation
that Calderón and Zygmund faced.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
improvement lemma calder zygmund involving singular spherical harmonic kernels obtained counter example given result best possible particular singularity vert log vert mathbb backslash suppose vanishes outside compact subset mathbb geq calder zygmund kernel spherical harmonic type suppose vert log vert rightarrow sense set int mathbb x y quad forall mathbb backslash log rightarrow sense infty counter example given mathbb where increased singularity log actually takes place different situation calder zygmund faced
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              Lawrence B. Difiore 1 ; Victor L. Shapiro 1
@article{10_4064_sm213_2_3,
     author = {Lawrence B. Difiore and Victor L. Shapiro},
     title = {A counter-example in singular integral theory},
     journal = {Studia Mathematica},
     pages = {157--167},
     publisher = {mathdoc},
     volume = {213},
     number = {2},
     year = {2012},
     doi = {10.4064/sm213-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm213-2-3/}
}
                      
                      
                    TY - JOUR AU - Lawrence B. Difiore AU - Victor L. Shapiro TI - A counter-example in singular integral theory JO - Studia Mathematica PY - 2012 SP - 157 EP - 167 VL - 213 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm213-2-3/ DO - 10.4064/sm213-2-3 LA - en ID - 10_4064_sm213_2_3 ER -
Lawrence B. Difiore; Victor L. Shapiro. A counter-example in singular integral theory. Studia Mathematica, Tome 213 (2012) no. 2, pp. 157-167. doi: 10.4064/sm213-2-3
Cité par Sources :
