A counter-example in singular integral theory
Studia Mathematica, Tome 213 (2012) no. 2, pp. 157-167

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

An improvement of a lemma of Calderón and Zygmund involving singular spherical harmonic kernels is obtained and a counter-example is given to show that this result is best possible. In a particular case when the singularity is $O(\vert \!\log r\vert)$, let $f\in C^{1}(\mathbb{R}^{N}\backslash\{ 0\})$ and suppose $f$ vanishes outside of a compact subset of $\mathbb{R}^{N},N\geq2.$ Also, let $k(x) $ be a Calderón–Zygmund kernel of spherical harmonic type. Suppose $f(x) =O(\vert\! \log r\vert)$ as $r\rightarrow0$ in the $L^{p}$-sense. Set \[ F(x) =\int_{\mathbb{R}^{N}}k(x-y) f(y)\, dy \quad \forall x\in\mathbb{R}^{N}\backslash\{0\}. \] Then $F(x) ={O}(\log^{2}r) $ as $r\rightarrow0$ in the $L^{p}$-sense, $1 p \infty.$ A counter-example is given in $\mathbb{R}^{2}$ where the increased singularity ${O}( \log^{2}r) $ actually takes place. This is different from the situation that Calderón and Zygmund faced.
DOI : 10.4064/sm213-2-3
Keywords: improvement lemma calder zygmund involving singular spherical harmonic kernels obtained counter example given result best possible particular singularity vert log vert mathbb backslash suppose vanishes outside compact subset mathbb geq calder zygmund kernel spherical harmonic type suppose vert log vert rightarrow sense set int mathbb x y quad forall mathbb backslash log rightarrow sense infty counter example given mathbb where increased singularity log actually takes place different situation calder zygmund faced

Lawrence B. Difiore 1 ; Victor L. Shapiro 1

1 Department of Mathematics University of California Riverside, CA 92521, U.S.A.
@article{10_4064_sm213_2_3,
     author = {Lawrence B. Difiore and Victor L. Shapiro},
     title = {A counter-example in singular integral theory},
     journal = {Studia Mathematica},
     pages = {157--167},
     publisher = {mathdoc},
     volume = {213},
     number = {2},
     year = {2012},
     doi = {10.4064/sm213-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm213-2-3/}
}
TY  - JOUR
AU  - Lawrence B. Difiore
AU  - Victor L. Shapiro
TI  - A counter-example in singular integral theory
JO  - Studia Mathematica
PY  - 2012
SP  - 157
EP  - 167
VL  - 213
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm213-2-3/
DO  - 10.4064/sm213-2-3
LA  - en
ID  - 10_4064_sm213_2_3
ER  - 
%0 Journal Article
%A Lawrence B. Difiore
%A Victor L. Shapiro
%T A counter-example in singular integral theory
%J Studia Mathematica
%D 2012
%P 157-167
%V 213
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm213-2-3/
%R 10.4064/sm213-2-3
%G en
%F 10_4064_sm213_2_3
Lawrence B. Difiore; Victor L. Shapiro. A counter-example in singular integral theory. Studia Mathematica, Tome 213 (2012) no. 2, pp. 157-167. doi: 10.4064/sm213-2-3

Cité par Sources :