On $(n,k)$-quasiparanormal operators
Studia Mathematica, Tome 209 (2012) no. 3, pp. 289-301

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $T$ be a bounded linear operator on a complex Hilbert space $\mathcal{H}$. For positive integers $n$ and $k$, an operator $T$ is called $(n,k)$-quasiparanormal if \[ \|T^{1+n}(T^{k}x)\|^{{1}/{(1+n)}}\|T^{k}x\|^{{n}/{(1+n)}}\geq\|T(T^{k}x)\|\quad \hbox{for }x\in\mathcal{H}. \] The class of $(n,k)$-quasiparanormal operators contains the classes of $n$-paranormal and $k$-quasiparanormal operators. We consider some properties of $(n,k)$-quasiparanormal operators: (1) inclusion relations and examples; (2) a matrix representation and SVEP (single valued extension property); (3) ascent and Bishop's property $(\beta)$; (4) quasinilpotent part and Riesz idempotents for $k$-quasiparanormal operators.
DOI : 10.4064/sm209-3-6
Keywords: bounded linear operator complex hilbert space mathcal positive integers operator called quasiparanormal geq quad hbox mathcal class quasiparanormal operators contains classes n paranormal k quasiparanormal operators consider properties quasiparanormal operators inclusion relations examples nbsp matrix representation svep single valued extension property ascent bishops property beta quasinilpotent part riesz idempotents k quasiparanormal operators

Jiangtao Yuan 1 ; Guoxing Ji 2

1 College of Mathematics and Information Science Shaanxi Normal University Xian 710062, China and School of Mathematics and Information Science Henan Polytechnic University Jiaozuo 454000, Henan Province, China
2 College of Mathematics and Information Science Shaanxi Normal University Xian 710062, China
@article{10_4064_sm209_3_6,
     author = {Jiangtao Yuan and Guoxing Ji},
     title = {On $(n,k)$-quasiparanormal operators},
     journal = {Studia Mathematica},
     pages = {289--301},
     publisher = {mathdoc},
     volume = {209},
     number = {3},
     year = {2012},
     doi = {10.4064/sm209-3-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm209-3-6/}
}
TY  - JOUR
AU  - Jiangtao Yuan
AU  - Guoxing Ji
TI  - On $(n,k)$-quasiparanormal operators
JO  - Studia Mathematica
PY  - 2012
SP  - 289
EP  - 301
VL  - 209
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm209-3-6/
DO  - 10.4064/sm209-3-6
LA  - en
ID  - 10_4064_sm209_3_6
ER  - 
%0 Journal Article
%A Jiangtao Yuan
%A Guoxing Ji
%T On $(n,k)$-quasiparanormal operators
%J Studia Mathematica
%D 2012
%P 289-301
%V 209
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm209-3-6/
%R 10.4064/sm209-3-6
%G en
%F 10_4064_sm209_3_6
Jiangtao Yuan; Guoxing Ji. On $(n,k)$-quasiparanormal operators. Studia Mathematica, Tome 209 (2012) no. 3, pp. 289-301. doi: 10.4064/sm209-3-6

Cité par Sources :