On $(n,k)$-quasiparanormal operators
Studia Mathematica, Tome 209 (2012) no. 3, pp. 289-301
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $T$ be a bounded linear operator on a complex Hilbert space $\mathcal{H}$.
For positive integers $n$ and $k$, an operator $T$ is called $(n,k)$-quasiparanormal if
\[
\|T^{1+n}(T^{k}x)\|^{{1}/{(1+n)}}\|T^{k}x\|^{{n}/{(1+n)}}\geq\|T(T^{k}x)\|\quad
\hbox{for }x\in\mathcal{H}.
\]
The class of $(n,k)$-quasiparanormal operators contains the classes of $n$-paranormal
and $k$-quasiparanormal operators.
We consider some properties of $(n,k)$-quasiparanormal operators:
(1) inclusion relations and examples;
(2) a matrix representation and SVEP (single valued extension property);
(3) ascent and Bishop's property $(\beta)$;
(4) quasinilpotent part and Riesz idempotents for $k$-quasiparanormal operators.
Keywords:
bounded linear operator complex hilbert space mathcal positive integers operator called quasiparanormal geq quad hbox mathcal class quasiparanormal operators contains classes n paranormal k quasiparanormal operators consider properties quasiparanormal operators inclusion relations examples nbsp matrix representation svep single valued extension property ascent bishops property beta quasinilpotent part riesz idempotents k quasiparanormal operators
Affiliations des auteurs :
Jiangtao Yuan 1 ; Guoxing Ji 2
@article{10_4064_sm209_3_6,
author = {Jiangtao Yuan and Guoxing Ji},
title = {On $(n,k)$-quasiparanormal operators},
journal = {Studia Mathematica},
pages = {289--301},
publisher = {mathdoc},
volume = {209},
number = {3},
year = {2012},
doi = {10.4064/sm209-3-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm209-3-6/}
}
Jiangtao Yuan; Guoxing Ji. On $(n,k)$-quasiparanormal operators. Studia Mathematica, Tome 209 (2012) no. 3, pp. 289-301. doi: 10.4064/sm209-3-6
Cité par Sources :