1College of Mathematics and Information Science Shaanxi Normal University Xian 710062, China and School of Mathematics and Information Science Henan Polytechnic University Jiaozuo 454000, Henan Province, China 2College of Mathematics and Information Science Shaanxi Normal University Xian 710062, China
Studia Mathematica, Tome 209 (2012) no. 3, pp. 289-301
Let $T$ be a bounded linear operator on a complex Hilbert space $\mathcal{H}$.
For positive integers $n$ and $k$, an operator $T$ is called $(n,k)$-quasiparanormal if
\[
\|T^{1+n}(T^{k}x)\|^{{1}/{(1+n)}}\|T^{k}x\|^{{n}/{(1+n)}}\geq\|T(T^{k}x)\|\quad
\hbox{for }x\in\mathcal{H}.
\]
The class of $(n,k)$-quasiparanormal operators contains the classes of $n$-paranormal
and $k$-quasiparanormal operators.
We consider some properties of $(n,k)$-quasiparanormal operators:
(1) inclusion relations and examples;
(2) a matrix representation and SVEP (single valued extension property);
(3) ascent and Bishop's property $(\beta)$;
(4) quasinilpotent part and Riesz idempotents for $k$-quasiparanormal operators.
Keywords:
bounded linear operator complex hilbert space mathcal positive integers operator called quasiparanormal geq quad hbox mathcal class quasiparanormal operators contains classes n paranormal k quasiparanormal operators consider properties quasiparanormal operators inclusion relations examples nbsp matrix representation svep single valued extension property ascent bishops property beta quasinilpotent part riesz idempotents k quasiparanormal operators
Affiliations des auteurs :
Jiangtao Yuan 
1
;
Guoxing Ji 
2
1
College of Mathematics and Information Science Shaanxi Normal University Xian 710062, China and School of Mathematics and Information Science Henan Polytechnic University Jiaozuo 454000, Henan Province, China
2
College of Mathematics and Information Science Shaanxi Normal University Xian 710062, China
@article{10_4064_sm209_3_6,
author = {Jiangtao Yuan and Guoxing Ji},
title = {On $(n,k)$-quasiparanormal operators},
journal = {Studia Mathematica},
pages = {289--301},
year = {2012},
volume = {209},
number = {3},
doi = {10.4064/sm209-3-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm209-3-6/}
}
TY - JOUR
AU - Jiangtao Yuan
AU - Guoxing Ji
TI - On $(n,k)$-quasiparanormal operators
JO - Studia Mathematica
PY - 2012
SP - 289
EP - 301
VL - 209
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm209-3-6/
DO - 10.4064/sm209-3-6
LA - en
ID - 10_4064_sm209_3_6
ER -
%0 Journal Article
%A Jiangtao Yuan
%A Guoxing Ji
%T On $(n,k)$-quasiparanormal operators
%J Studia Mathematica
%D 2012
%P 289-301
%V 209
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm209-3-6/
%R 10.4064/sm209-3-6
%G en
%F 10_4064_sm209_3_6
Jiangtao Yuan; Guoxing Ji. On $(n,k)$-quasiparanormal operators. Studia Mathematica, Tome 209 (2012) no. 3, pp. 289-301. doi: 10.4064/sm209-3-6