A general duality theorem for the Monge–Kantorovich
transport problem
Studia Mathematica, Tome 209 (2012) no. 2, pp. 151-167
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The duality theory for the Monge–Kantorovich transport problem is analyzed in a general setting. The spaces $X, Y$ are assumed to be Polish and equipped with Borel probability measures $\mu $ and $\nu $. The transport cost function $c:X\times Y \to [0,\infty ]$ is assumed to be Borel. Our main result states that in this setting there is no duality gap provided the optimal transport problem is formulated in a suitably relaxed way. The relaxed transport problem is defined as the limiting cost of the partial transport of masses $1-\varepsilon $ from $(X,\mu )$ to $(Y, \nu )$ as $\varepsilon >0$ tends to zero.
The classical duality theorems of H. Kellerer, where $c$ is lower semicontinuous or uniformly bounded, quickly follow from these general results.
Keywords:
duality theory monge kantorovich transport problem analyzed general setting spaces assumed polish equipped borel probability measures transport cost function times infty assumed borel main result states setting there duality gap provided optimal transport problem formulated suitably relaxed relaxed transport problem defined limiting cost partial transport masses varepsilon varepsilon tends zero classical duality theorems kellerer where lower semicontinuous uniformly bounded quickly follow these general results
Affiliations des auteurs :
Mathias Beiglböck 1 ; Christian Léonard 2 ; Walter Schachermayer 1
@article{10_4064_sm209_2_4,
author = {Mathias Beiglb\"ock and Christian L\'eonard and Walter Schachermayer},
title = {A general duality theorem for the {Monge{\textendash}Kantorovich
} transport problem},
journal = {Studia Mathematica},
pages = {151--167},
publisher = {mathdoc},
volume = {209},
number = {2},
year = {2012},
doi = {10.4064/sm209-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm209-2-4/}
}
TY - JOUR AU - Mathias Beiglböck AU - Christian Léonard AU - Walter Schachermayer TI - A general duality theorem for the Monge–Kantorovich transport problem JO - Studia Mathematica PY - 2012 SP - 151 EP - 167 VL - 209 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm209-2-4/ DO - 10.4064/sm209-2-4 LA - en ID - 10_4064_sm209_2_4 ER -
%0 Journal Article %A Mathias Beiglböck %A Christian Léonard %A Walter Schachermayer %T A general duality theorem for the Monge–Kantorovich transport problem %J Studia Mathematica %D 2012 %P 151-167 %V 209 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm209-2-4/ %R 10.4064/sm209-2-4 %G en %F 10_4064_sm209_2_4
Mathias Beiglböck; Christian Léonard; Walter Schachermayer. A general duality theorem for the Monge–Kantorovich transport problem. Studia Mathematica, Tome 209 (2012) no. 2, pp. 151-167. doi: 10.4064/sm209-2-4
Cité par Sources :