A general duality theorem for the Monge–Kantorovich transport problem
Studia Mathematica, Tome 209 (2012) no. 2, pp. 151-167

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The duality theory for the Monge–Kantorovich transport problem is analyzed in a general setting. The spaces $X, Y$ are assumed to be Polish and equipped with Borel probability measures $\mu $ and $\nu $. The transport cost function $c:X\times Y \to [0,\infty ]$ is assumed to be Borel. Our main result states that in this setting there is no duality gap provided the optimal transport problem is formulated in a suitably relaxed way. The relaxed transport problem is defined as the limiting cost of the partial transport of masses $1-\varepsilon $ from $(X,\mu )$ to $(Y, \nu )$ as $\varepsilon >0$ tends to zero. The classical duality theorems of H. Kellerer, where $c$ is lower semicontinuous or uniformly bounded, quickly follow from these general results.
DOI : 10.4064/sm209-2-4
Keywords: duality theory monge kantorovich transport problem analyzed general setting spaces assumed polish equipped borel probability measures transport cost function times infty assumed borel main result states setting there duality gap provided optimal transport problem formulated suitably relaxed relaxed transport problem defined limiting cost partial transport masses varepsilon varepsilon tends zero classical duality theorems kellerer where lower semicontinuous uniformly bounded quickly follow these general results

Mathias Beiglböck 1 ; Christian Léonard 2 ; Walter Schachermayer 1

1 Faculty of Mathematics University of Vienna Nordbergstrasse 15 1090 Wien, Austria
2 Modal-X, Université Paris Ouest Bât. G, 200 av. de la République 92001 Nanterre, France
@article{10_4064_sm209_2_4,
     author = {Mathias Beiglb\"ock and Christian L\'eonard and Walter Schachermayer},
     title = {A general duality theorem for the {Monge{\textendash}Kantorovich
} transport problem},
     journal = {Studia Mathematica},
     pages = {151--167},
     publisher = {mathdoc},
     volume = {209},
     number = {2},
     year = {2012},
     doi = {10.4064/sm209-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm209-2-4/}
}
TY  - JOUR
AU  - Mathias Beiglböck
AU  - Christian Léonard
AU  - Walter Schachermayer
TI  - A general duality theorem for the Monge–Kantorovich
 transport problem
JO  - Studia Mathematica
PY  - 2012
SP  - 151
EP  - 167
VL  - 209
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm209-2-4/
DO  - 10.4064/sm209-2-4
LA  - en
ID  - 10_4064_sm209_2_4
ER  - 
%0 Journal Article
%A Mathias Beiglböck
%A Christian Léonard
%A Walter Schachermayer
%T A general duality theorem for the Monge–Kantorovich
 transport problem
%J Studia Mathematica
%D 2012
%P 151-167
%V 209
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm209-2-4/
%R 10.4064/sm209-2-4
%G en
%F 10_4064_sm209_2_4
Mathias Beiglböck; Christian Léonard; Walter Schachermayer. A general duality theorem for the Monge–Kantorovich
 transport problem. Studia Mathematica, Tome 209 (2012) no. 2, pp. 151-167. doi: 10.4064/sm209-2-4

Cité par Sources :