A Paley–Wiener type theorem for generalized non-quasianalytic classes
Studia Mathematica, Tome 208 (2012) no. 1, pp. 31-46

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $P$ be a hypoelliptic polynomial. We consider classes of ultradifferentiable functions with respect to the iterates of the partial differential operator $P(D)$ and prove that such classes satisfy a Paley–Wiener type theorem. These classes and the corresponding test spaces are nuclear.
DOI : 10.4064/sm208-1-3
Keywords: hypoelliptic polynomial consider classes ultradifferentiable functions respect iterates partial differential operator prove classes satisfy paley wiener type theorem these classes corresponding test spaces nuclear

Jordi Juan-Huguet 1

1 Departament de Didàctica de la Matemàtica Universitat de València Avda. Tarongers, 4 46022 València, Spain
@article{10_4064_sm208_1_3,
     author = {Jordi Juan-Huguet},
     title = {A {Paley{\textendash}Wiener} type theorem for generalized non-quasianalytic classes},
     journal = {Studia Mathematica},
     pages = {31--46},
     publisher = {mathdoc},
     volume = {208},
     number = {1},
     year = {2012},
     doi = {10.4064/sm208-1-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm208-1-3/}
}
TY  - JOUR
AU  - Jordi Juan-Huguet
TI  - A Paley–Wiener type theorem for generalized non-quasianalytic classes
JO  - Studia Mathematica
PY  - 2012
SP  - 31
EP  - 46
VL  - 208
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm208-1-3/
DO  - 10.4064/sm208-1-3
LA  - en
ID  - 10_4064_sm208_1_3
ER  - 
%0 Journal Article
%A Jordi Juan-Huguet
%T A Paley–Wiener type theorem for generalized non-quasianalytic classes
%J Studia Mathematica
%D 2012
%P 31-46
%V 208
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm208-1-3/
%R 10.4064/sm208-1-3
%G en
%F 10_4064_sm208_1_3
Jordi Juan-Huguet. A Paley–Wiener type theorem for generalized non-quasianalytic classes. Studia Mathematica, Tome 208 (2012) no. 1, pp. 31-46. doi: 10.4064/sm208-1-3

Cité par Sources :