Geometry of the Banach spaces $C(\beta {\mathbb N} \times K,X)$
 for compact metric spaces $K$
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 207 (2011) no. 2, pp. 153-180
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              A classical result of Cembranos and Freniche states
that the $C(K, X)$ space contains a complemented copy of $c_{0}$ whenever
$K$ is an infinite compact Hausdorff space and $X$ is an infinite-dimensional
Banach space. This paper takes this result as a starting point and
begins a study of conditions under which the spaces
$C(\alpha)$, $\alpha\omega_1$, are quotients of or complemented in $C(K,X)$.In contrast to the $c_0$ result,
we prove that if $C(\beta \mathbb{N}\times [1,\omega], X)$ contains
a complemented copy of $C(\omega^\omega)$ then $X$ contains a copy
of $c_{0}$. Moreover, we show that $C(\omega^\omega)$ is not even
a quotient of $C(\beta {\mathbb N} \times [1,\omega], \ell_p)$, $1  p 
\infty$.We then completely determine the separable $C(K)$ spaces which are
isomorphic to a complemented subspace or a quotient of a $C(\beta
{\mathbb N} \times [1,\alpha], \ell_p)$ space for countable
ordinals $\alpha$ and $1 \leq p \infty$. As a consequence, we
obtain the isomorphic classification of the $C(\beta {\mathbb N}
\times K, \ell_p)$ spaces for infinite compact metric spaces $K$ and $1
\leq p  \infty$. Indeed, we establish the following more general
cancellation law. Suppose that the Banach space $X$ contains
no copy of $c_{0}$ and $K_{1}$ and $K_{2}$ are infinite compact
metric spaces, then the following statements are equivalent:
(1) $C(\beta \mathbb{N}\times K_{1}, X)$ is
isomorphic to $C(\beta \mathbb{N}\times K_{2}, X)$. 
(2) $C(K_{1})$ is isomorphic to $C(K_{2}).$
 
These results are applied to the isomorphic classification of
some spaces of compact operators.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
classical result cembranos freniche states space contains complemented copy whenever infinite compact hausdorff space infinite dimensional banach space paper takes result starting point begins study conditions under which spaces alpha alpha omega quotients complemented contrast result prove beta mathbb times omega contains complemented copy omega omega contains copy moreover omega omega even quotient beta mathbb times omega ell infty completely determine separable spaces which isomorphic complemented subspace quotient beta mathbb times alpha ell space countable ordinals alpha leq infty consequence obtain isomorphic classification beta mathbb times ell spaces infinite compact metric spaces leq infty indeed establish following general cancellation law suppose banach space contains copy infinite compact metric spaces following statements equivalent beta mathbb times isomorphic beta mathbb times isomorphic these results applied isomorphic classification spaces compact operators
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              Dale E. Alspach 1 ; Elói Medina Galego 2
@article{10_4064_sm207_2_4,
     author = {Dale E. Alspach and El\'oi Medina Galego},
     title = {Geometry of the {Banach} spaces $C(\beta {\mathbb N} \times K,X)$
 for compact metric spaces $K$},
     journal = {Studia Mathematica},
     pages = {153--180},
     publisher = {mathdoc},
     volume = {207},
     number = {2},
     year = {2011},
     doi = {10.4064/sm207-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm207-2-4/}
}
                      
                      
                    TY  - JOUR
AU  - Dale E. Alspach
AU  - Elói Medina Galego
TI  - Geometry of the Banach spaces $C(\beta {\mathbb N} \times K,X)$
 for compact metric spaces $K$
JO  - Studia Mathematica
PY  - 2011
SP  - 153
EP  - 180
VL  - 207
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm207-2-4/
DO  - 10.4064/sm207-2-4
LA  - en
ID  - 10_4064_sm207_2_4
ER  - 
                      
                      
                    %0 Journal Article
%A Dale E. Alspach
%A Elói Medina Galego
%T Geometry of the Banach spaces $C(\beta {\mathbb N} \times K,X)$
 for compact metric spaces $K$
%J Studia Mathematica
%D 2011
%P 153-180
%V 207
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm207-2-4/
%R 10.4064/sm207-2-4
%G en
%F 10_4064_sm207_2_4
                      
                      
                    Dale E. Alspach; Elói Medina Galego. Geometry of the Banach spaces $C(\beta {\mathbb N} \times K,X)$
 for compact metric spaces $K$. Studia Mathematica, Tome 207 (2011) no. 2, pp. 153-180. doi: 10.4064/sm207-2-4
                  
                Cité par Sources :
