A “hidden” characterization of
polyhedral convex sets
Studia Mathematica, Tome 206 (2011) no. 1, pp. 63-74
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove that a closed convex subset $C$ of a complete linear metric space $X$ is polyhedral in its closed linear hull if and only if no infinite subset $A\subset X\setminus C$ can be hidden behind $C$ in the sense that $[x,y]\cap C\not =
\emptyset $ for any distinct $x,y\in A$.
Keywords:
prove closed convex subset complete linear metric space polyhedral its closed linear hull only infinite subset subset setminus hidden behind sense cap emptyset distinct
Affiliations des auteurs :
Taras Banakh 1 ; Ivan Hetman 2
@article{10_4064_sm206_1_5,
author = {Taras Banakh and Ivan Hetman},
title = {A {\textquotedblleft}hidden{\textquotedblright} characterization of
polyhedral convex sets},
journal = {Studia Mathematica},
pages = {63--74},
publisher = {mathdoc},
volume = {206},
number = {1},
year = {2011},
doi = {10.4064/sm206-1-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm206-1-5/}
}
TY - JOUR AU - Taras Banakh AU - Ivan Hetman TI - A “hidden” characterization of polyhedral convex sets JO - Studia Mathematica PY - 2011 SP - 63 EP - 74 VL - 206 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm206-1-5/ DO - 10.4064/sm206-1-5 LA - en ID - 10_4064_sm206_1_5 ER -
Taras Banakh; Ivan Hetman. A “hidden” characterization of polyhedral convex sets. Studia Mathematica, Tome 206 (2011) no. 1, pp. 63-74. doi: 10.4064/sm206-1-5
Cité par Sources :