Asymptotic Fourier and Laplace transformations
for hyperfunctions
Studia Mathematica, Tome 205 (2011) no. 1, pp. 41-69
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We develop an elementary theory of Fourier and Laplace transformations for exponentially decreasing hyperfunctions. Since any hyperfunction can be extended to an exponentially decreasing hyperfunction, this provides simple notions of asymptotic Fourier and Laplace transformations for hyperfunctions, improving the existing models. This is used to prove criteria for the uniqueness and solvability of the abstract Cauchy problem in Fréchet spaces.
Keywords:
develop elementary theory fourier laplace transformations exponentially decreasing hyperfunctions since hyperfunction extended exponentially decreasing hyperfunction provides simple notions asymptotic fourier laplace transformations hyperfunctions improving existing models prove criteria uniqueness solvability abstract cauchy problem chet spaces
Affiliations des auteurs :
Michael Langenbruch  1
@article{10_4064_sm205_1_4,
author = {Michael Langenbruch},
title = {Asymptotic {Fourier} and {Laplace} transformations
for hyperfunctions},
journal = {Studia Mathematica},
pages = {41--69},
year = {2011},
volume = {205},
number = {1},
doi = {10.4064/sm205-1-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm205-1-4/}
}
Michael Langenbruch. Asymptotic Fourier and Laplace transformations for hyperfunctions. Studia Mathematica, Tome 205 (2011) no. 1, pp. 41-69. doi: 10.4064/sm205-1-4
Cité par Sources :