Lower semicontinuity of variational integrals on elliptic complexes
Studia Mathematica, Tome 204 (2011) no. 3, pp. 283-294

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove a lower semicontinuity result for variational integrals associated with a given first order elliptic complex, extending, in this general setting, a well known result in the case $ {\cal D}^{\prime}(\mathbb R^n,\mathbb R) \xrightarrow {\nabla} {\cal D}^{\prime}(\mathbb R^n,\mathbb R^n) \xrightarrow {\rm curl} {\cal D^{\prime}}(\mathbb R^n,\mathbb R^{n\times n}). $
DOI : 10.4064/sm204-3-7
Keywords: prove lower semicontinuity result variational integrals associated given first order elliptic complex extending general setting known result cal prime mathbb mathbb xrightarrow nabla cal prime mathbb mathbb xrightarrow curl cal prime mathbb mathbb times

Anna Verde 1

1 Dipartimento di Matematica Università degli Studi di Napoli “Federico II” via Cintia 80126 Napoli, Italy
@article{10_4064_sm204_3_7,
     author = {Anna Verde},
     title = {Lower semicontinuity of variational integrals
 on elliptic complexes},
     journal = {Studia Mathematica},
     pages = {283--294},
     publisher = {mathdoc},
     volume = {204},
     number = {3},
     year = {2011},
     doi = {10.4064/sm204-3-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm204-3-7/}
}
TY  - JOUR
AU  - Anna Verde
TI  - Lower semicontinuity of variational integrals
 on elliptic complexes
JO  - Studia Mathematica
PY  - 2011
SP  - 283
EP  - 294
VL  - 204
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm204-3-7/
DO  - 10.4064/sm204-3-7
LA  - en
ID  - 10_4064_sm204_3_7
ER  - 
%0 Journal Article
%A Anna Verde
%T Lower semicontinuity of variational integrals
 on elliptic complexes
%J Studia Mathematica
%D 2011
%P 283-294
%V 204
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm204-3-7/
%R 10.4064/sm204-3-7
%G en
%F 10_4064_sm204_3_7
Anna Verde. Lower semicontinuity of variational integrals
 on elliptic complexes. Studia Mathematica, Tome 204 (2011) no. 3, pp. 283-294. doi: 10.4064/sm204-3-7

Cité par Sources :