Lower semicontinuity of variational integrals
on elliptic complexes
Studia Mathematica, Tome 204 (2011) no. 3, pp. 283-294
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove a lower semicontinuity result for variational integrals
associated with a given first order elliptic complex, extending, in
this general setting, a well known result in the case
$
{\cal D}^{\prime}(\mathbb R^n,\mathbb R) \xrightarrow {\nabla}
{\cal D}^{\prime}(\mathbb R^n,\mathbb R^n) \xrightarrow {\rm curl}
{\cal D^{\prime}}(\mathbb R^n,\mathbb R^{n\times n}).
$
Keywords:
prove lower semicontinuity result variational integrals associated given first order elliptic complex extending general setting known result cal prime mathbb mathbb xrightarrow nabla cal prime mathbb mathbb xrightarrow curl cal prime mathbb mathbb times
Affiliations des auteurs :
Anna Verde 1
@article{10_4064_sm204_3_7,
author = {Anna Verde},
title = {Lower semicontinuity of variational integrals
on elliptic complexes},
journal = {Studia Mathematica},
pages = {283--294},
publisher = {mathdoc},
volume = {204},
number = {3},
year = {2011},
doi = {10.4064/sm204-3-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm204-3-7/}
}
Anna Verde. Lower semicontinuity of variational integrals on elliptic complexes. Studia Mathematica, Tome 204 (2011) no. 3, pp. 283-294. doi: 10.4064/sm204-3-7
Cité par Sources :