Isomorphic classification of the tensor products $
E_{0}( \exp \alpha i)\mathbin{ \widehat{\otimes }}E_{\infty }( \exp\beta j) $
Studia Mathematica, Tome 204 (2011) no. 3, pp. 275-282
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
It is proved, using so-called multirectangular invariants, that the
condition $\alpha \beta =\tilde{\alpha}\tilde{\beta}$ is sufficient for the
isomorphism of the spaces $E_{0}(\exp \alpha i)\mathbin{\widehat{\otimes}}E_{\infty }(\exp
\beta j)$ and $E_{0}(\exp \tilde{\alpha}i)\mathbin{\widehat{\otimes}}E_{\infty }(\exp
\tilde{\beta}j)$. This solves a problem posed in [14, 15, 1].
Notice
that the necessity has been proved earlier in [14].
Keywords:
proved using so called multirectangular invariants condition alpha beta tilde alpha tilde beta sufficient isomorphism spaces exp alpha mathbin widehat otimes infty exp beta exp tilde alpha mathbin widehat otimes infty exp tilde beta solves problem posed notice necessity has proved earlier
Affiliations des auteurs :
Peter Chalov 1 ; Vyacheslav Zakharyuta 2
@article{10_4064_sm204_3_6,
author = {Peter Chalov and Vyacheslav Zakharyuta},
title = {Isomorphic classification of the tensor products $
E_{0}( \exp \alpha i)\mathbin{ \widehat{\otimes }}E_{\infty }( \exp\beta j) $},
journal = {Studia Mathematica},
pages = {275--282},
publisher = {mathdoc},
volume = {204},
number = {3},
year = {2011},
doi = {10.4064/sm204-3-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm204-3-6/}
}
TY - JOUR
AU - Peter Chalov
AU - Vyacheslav Zakharyuta
TI - Isomorphic classification of the tensor products $
E_{0}( \exp \alpha i)\mathbin{ \widehat{\otimes }}E_{\infty }( \exp\beta j) $
JO - Studia Mathematica
PY - 2011
SP - 275
EP - 282
VL - 204
IS - 3
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm204-3-6/
DO - 10.4064/sm204-3-6
LA - en
ID - 10_4064_sm204_3_6
ER -
%0 Journal Article
%A Peter Chalov
%A Vyacheslav Zakharyuta
%T Isomorphic classification of the tensor products $
E_{0}( \exp \alpha i)\mathbin{ \widehat{\otimes }}E_{\infty }( \exp\beta j) $
%J Studia Mathematica
%D 2011
%P 275-282
%V 204
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm204-3-6/
%R 10.4064/sm204-3-6
%G en
%F 10_4064_sm204_3_6
Peter Chalov; Vyacheslav Zakharyuta. Isomorphic classification of the tensor products $
E_{0}( \exp \alpha i)\mathbin{ \widehat{\otimes }}E_{\infty }( \exp\beta j) $. Studia Mathematica, Tome 204 (2011) no. 3, pp. 275-282. doi: 10.4064/sm204-3-6
Cité par Sources :