$M$-ideals of homogeneous polynomials
Studia Mathematica, Tome 202 (2011) no. 1, pp. 81-104

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study the problem of whether $\mathcal{P}_w(^nE)$, the space of $n$-homogeneous polynomials which are weakly continuous on bounded sets, is an $M$-ideal in the space $\mathcal{P}(^nE)$ of continuous $n$-homogeneous polynomials. We obtain conditions that ensure this fact and present some examples. We prove that if $\mathcal{P}_w(^nE)$ is an $M$-ideal in $\mathcal{P}(^nE)$, then $\mathcal{P}_w(^nE)$ coincides with $\mathcal{P}_{w0}(^nE)$ ($n$-homogeneous polynomials that are weakly continuous on bounded sets at 0). We introduce a polynomial version of property $(M)$ and derive that if $\mathcal{P}_w(^nE)=\mathcal{P}_{w0}(^nE)$ and $\mathcal{K}(E)$ is an $M$-ideal in $\mathcal{L}(E)$, then $\mathcal{P}_w(^nE)$ is an $M$-ideal in $\mathcal{P}(^nE)$. We also show that if $\mathcal{P}_w(^nE)$ is an $M$-ideal in $\mathcal{P}(^nE)$, then the set of $n$-homogeneous polynomials whose Aron–Berner extension does not attain its norm is nowhere dense in $\mathcal{P}(^nE)$. Finally, we discuss an analogous $M$-ideal problem for block diagonal polynomials.
DOI : 10.4064/sm202-1-5
Keywords: study problem whether mathcal space n homogeneous polynomials which weakly continuous bounded sets m ideal space mathcal continuous n homogeneous polynomials obtain conditions ensure present examples prove mathcal m ideal mathcal mathcal coincides mathcal n homogeneous polynomials weakly continuous bounded sets introduce polynomial version property derive mathcal mathcal mathcal m ideal mathcal mathcal m ideal mathcal mathcal m ideal mathcal set n homogeneous polynomials whose aron berner extension does attain its norm nowhere dense mathcal finally discuss analogous m ideal problem block diagonal polynomials

Verónica Dimant 1

1 Departamento de Matemática Universidad de San Andrés Vito Dumas 284 (B1644BID) Victoria, Buenos Aires, Argentina and CONICET
@article{10_4064_sm202_1_5,
     author = {Ver\'onica Dimant},
     title = {$M$-ideals of homogeneous polynomials},
     journal = {Studia Mathematica},
     pages = {81--104},
     publisher = {mathdoc},
     volume = {202},
     number = {1},
     year = {2011},
     doi = {10.4064/sm202-1-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm202-1-5/}
}
TY  - JOUR
AU  - Verónica Dimant
TI  - $M$-ideals of homogeneous polynomials
JO  - Studia Mathematica
PY  - 2011
SP  - 81
EP  - 104
VL  - 202
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm202-1-5/
DO  - 10.4064/sm202-1-5
LA  - en
ID  - 10_4064_sm202_1_5
ER  - 
%0 Journal Article
%A Verónica Dimant
%T $M$-ideals of homogeneous polynomials
%J Studia Mathematica
%D 2011
%P 81-104
%V 202
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm202-1-5/
%R 10.4064/sm202-1-5
%G en
%F 10_4064_sm202_1_5
Verónica Dimant. $M$-ideals of homogeneous polynomials. Studia Mathematica, Tome 202 (2011) no. 1, pp. 81-104. doi: 10.4064/sm202-1-5

Cité par Sources :