Non-hyperreflexive reflexive spaces of operators
Studia Mathematica, Tome 202 (2011) no. 1, pp. 65-80
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We study operators whose commutant is reflexive but not hyperreflexive. We construct a $C_0$ contraction and a Jordan block operator $S_B$ associated with a Blaschke product $B$ which have the above mentioned property. A sufficient condition for hyperreflexivity of $S_B$ is given. Some other results related to hyperreflexivity of spaces of operators that could be interesting in themselves are proved.
Keywords:
study operators whose commutant reflexive hyperreflexive construct contraction jordan block operator associated blaschke product which have above mentioned property sufficient condition hyperreflexivity given other results related hyperreflexivity spaces operators could interesting themselves proved
Affiliations des auteurs :
Roman V. Bessonov 1 ; Janko Bračič 2 ; Michal Zajac 3
@article{10_4064_sm202_1_4,
author = {Roman V. Bessonov and Janko Bra\v{c}i\v{c} and Michal Zajac},
title = {Non-hyperreflexive reflexive spaces of operators},
journal = {Studia Mathematica},
pages = {65--80},
publisher = {mathdoc},
volume = {202},
number = {1},
year = {2011},
doi = {10.4064/sm202-1-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm202-1-4/}
}
TY - JOUR AU - Roman V. Bessonov AU - Janko Bračič AU - Michal Zajac TI - Non-hyperreflexive reflexive spaces of operators JO - Studia Mathematica PY - 2011 SP - 65 EP - 80 VL - 202 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm202-1-4/ DO - 10.4064/sm202-1-4 LA - en ID - 10_4064_sm202_1_4 ER -
Roman V. Bessonov; Janko Bračič; Michal Zajac. Non-hyperreflexive reflexive spaces of operators. Studia Mathematica, Tome 202 (2011) no. 1, pp. 65-80. doi: 10.4064/sm202-1-4
Cité par Sources :