Non-hyperreflexive reflexive spaces of operators
Studia Mathematica, Tome 202 (2011) no. 1, pp. 65-80

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study operators whose commutant is reflexive but not hyperreflexive. We construct a $C_0$ contraction and a Jordan block operator $S_B$ associated with a Blaschke product $B$ which have the above mentioned property. A sufficient condition for hyperreflexivity of $S_B$ is given. Some other results related to hyperreflexivity of spaces of operators that could be interesting in themselves are proved.
DOI : 10.4064/sm202-1-4
Keywords: study operators whose commutant reflexive hyperreflexive construct contraction jordan block operator associated blaschke product which have above mentioned property sufficient condition hyperreflexivity given other results related hyperreflexivity spaces operators could interesting themselves proved

Roman V. Bessonov 1 ; Janko Bračič 2 ; Michal Zajac 3

1 Steklov Institute of Mathematics of Russian Academy of Sciences St. Petersburg Department
2 IMFM University of Ljubljana Jadranska 19 1000 Ljubljana, Slovenia
3 Department of Mathematics Slovak University of Technology SK-812 19 Bratislava, Slovakia
@article{10_4064_sm202_1_4,
     author = {Roman V. Bessonov and Janko Bra\v{c}i\v{c} and Michal Zajac},
     title = {Non-hyperreflexive reflexive spaces of operators},
     journal = {Studia Mathematica},
     pages = {65--80},
     publisher = {mathdoc},
     volume = {202},
     number = {1},
     year = {2011},
     doi = {10.4064/sm202-1-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm202-1-4/}
}
TY  - JOUR
AU  - Roman V. Bessonov
AU  - Janko Bračič
AU  - Michal Zajac
TI  - Non-hyperreflexive reflexive spaces of operators
JO  - Studia Mathematica
PY  - 2011
SP  - 65
EP  - 80
VL  - 202
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm202-1-4/
DO  - 10.4064/sm202-1-4
LA  - en
ID  - 10_4064_sm202_1_4
ER  - 
%0 Journal Article
%A Roman V. Bessonov
%A Janko Bračič
%A Michal Zajac
%T Non-hyperreflexive reflexive spaces of operators
%J Studia Mathematica
%D 2011
%P 65-80
%V 202
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm202-1-4/
%R 10.4064/sm202-1-4
%G en
%F 10_4064_sm202_1_4
Roman V. Bessonov; Janko Bračič; Michal Zajac. Non-hyperreflexive reflexive spaces of operators. Studia Mathematica, Tome 202 (2011) no. 1, pp. 65-80. doi: 10.4064/sm202-1-4

Cité par Sources :