Remarks on the critical Besov space and its
 embedding into weighted Besov–Orlicz spaces
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 201 (2010) no. 3, pp. 227-251
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              We present several continuous
embeddings of the critical Besov space
$B^{{n}/{p},\rho}_p(\Bbb R^n)$. We first establish a
Gagliardo-Nirenberg type estimate
$$
\|u\|_{\dot B^{0,\nu}_{q,w_r}}\leq
C_n\left(\frac{1}{n-r}\right)^{\frac{1}{q}+\frac{1}{\nu}-\frac{1}{\rho}}
\left(\frac{q}{r}\right)^{\frac{1}{\nu}-\frac{1}{\rho}}
\|u\|_{\dot B^{0,\rho}_p}^{\frac{(n-r)p}{nq}}\|u\|_{\dot
B^{{n}/{p},\rho}_p}^{1-\frac{(n-r)p}{nq}},
$$
for $1 p\leq q \infty$, $1\leq \nu \rho\leq\infty$ and the weight
function $w_r(x)={1}/{|x|^r}$ with $0 r n$. Next, we  prove
the corresponding Trudinger type estimate, and obtain it in terms
of the embedding  $B^{{n}/{p},\rho}_p(\Bbb
R^n)\hookrightarrow B^{0,\nu}_{{\mit\Phi}_0,w_r}(\Bbb R^n)$, where
the function ${\mit\Phi}_0$ of the weighted Besov–Orlicz space
$B^{0,\nu}_{{\mit\Phi}_0,w_r}(\Bbb R^n)$ is a Young function of the
exponential type. Another point of interest is to embed
$B^{{n}/{p},\rho}_p(\Bbb R^n)$ into the weighted Besov space
$B^{0,\rho}_{p,w_n}(\Bbb R^n)$ with the critical weight
$w_n(x)={1}/{|x|^n}$; more  precisely, we prove
$B^{{n}/{p},\rho}_p(\Bbb R^n)\hookrightarrow
B^{0,\rho}_{p,W_s}(\Bbb R^n)$ with the weight
$W_s(x)=\frac{1}{|x|^n\left[\log(e+{1}/{|x|})\right]^s}$
for any $s>1$.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
present several continuous embeddings critical besov space rho bbb first establish gagliardo nirenberg type estimate dot leq frac n r right frac frac frac rho frac right frac frac rho dot rho frac n r dot rho frac n r leq infty leq rho leq infty weight function prove corresponding trudinger type estimate obtain terms embedding rho bbb hookrightarrow mit phi bbb where function mit phi weighted besov orlicz space mit phi bbb young function exponential type another point interest embed rho bbb weighted besov space rho bbb critical weight precisely prove rho bbb hookrightarrow rho bbb weight frac log right
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              Hidemitsu Wadade 1
@article{10_4064_sm201_3_2,
     author = {Hidemitsu Wadade},
     title = {Remarks on the critical {Besov} space and its
 embedding into weighted {Besov{\textendash}Orlicz} spaces},
     journal = {Studia Mathematica},
     pages = {227--251},
     publisher = {mathdoc},
     volume = {201},
     number = {3},
     year = {2010},
     doi = {10.4064/sm201-3-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm201-3-2/}
}
                      
                      
                    TY - JOUR AU - Hidemitsu Wadade TI - Remarks on the critical Besov space and its embedding into weighted Besov–Orlicz spaces JO - Studia Mathematica PY - 2010 SP - 227 EP - 251 VL - 201 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm201-3-2/ DO - 10.4064/sm201-3-2 LA - en ID - 10_4064_sm201_3_2 ER -
Hidemitsu Wadade. Remarks on the critical Besov space and its embedding into weighted Besov–Orlicz spaces. Studia Mathematica, Tome 201 (2010) no. 3, pp. 227-251. doi: 10.4064/sm201-3-2
Cité par Sources :
