1Faculty of Mathematics and Informatics Ovidius University Mamaia Blvd. 124 Constanţa, Romania 2Faculty of Mathematics and Physics and Faculty of Education University of Ljubljana P.O. Box 2964 Ljubljana 1001, Slovenia
Studia Mathematica, Tome 200 (2010) no. 1, pp. 79-89
We prove that if $F$ is a Lipschitz map from the set of all complex $n\times n$ matrices into itself with $F(0)=0$ such that given any $x$ and $y$ we know that
$F( x) -F( y) $ and $x-y$ have at least one common
eigenvalue, then either $F( x) =uxu^{-1}$ or $F( x)
=ux^{t}u^{-1}$ for all $x$, for some invertible $n\times n$ matrix $u$. We
arrive at the same conclusion by supposing $F$ to be of class $\mathcal{C}^{1}$ on a domain in $\mathcal{M}_{n}$ containing the null matrix, instead
of Lipschitz. We also prove that if $F$ is of class $\mathcal{C}^{1}$ on a
domain containing the null matrix satisfying $F(0)=0$ and $\rho (F( x) -F(
y) )=\rho (x-y)$ for all $x$ and $y$, where $\rho ( \cdot )
$ denotes the spectral radius, then there exists $\gamma \in \mathbb{C}$ of
modulus one such that either $\gamma ^{-1}F$ or $\gamma ^{-1}\overline{F}$
is of the above form, where $\overline{F}$ is the (complex) conjugate of $F$.
Keywords:
prove lipschitz map set complex times matrices itself given know f x y have least common eigenvalue either uxu invertible times matrix arrive conclusion supposing class mathcal domain mathcal containing null matrix instead lipschitz prove class mathcal domain containing null matrix satisfying rho f rho x y where rho cdot denotes spectral radius there exists gamma mathbb modulus either gamma gamma overline above form where overline complex conjugate
Affiliations des auteurs :
Constantin Costara 
1
;
Dušan Repovš 
2
1
Faculty of Mathematics and Informatics Ovidius University Mamaia Blvd. 124 Constanţa, Romania
2
Faculty of Mathematics and Physics and Faculty of Education University of Ljubljana P.O. Box 2964 Ljubljana 1001, Slovenia
@article{10_4064_sm200_1_5,
author = {Constantin Costara and Du\v{s}an Repov\v{s}},
title = {Nonlinear mappings preserving at least one eigenvalue},
journal = {Studia Mathematica},
pages = {79--89},
year = {2010},
volume = {200},
number = {1},
doi = {10.4064/sm200-1-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm200-1-5/}
}
TY - JOUR
AU - Constantin Costara
AU - Dušan Repovš
TI - Nonlinear mappings preserving at least one eigenvalue
JO - Studia Mathematica
PY - 2010
SP - 79
EP - 89
VL - 200
IS - 1
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm200-1-5/
DO - 10.4064/sm200-1-5
LA - en
ID - 10_4064_sm200_1_5
ER -
%0 Journal Article
%A Constantin Costara
%A Dušan Repovš
%T Nonlinear mappings preserving at least one eigenvalue
%J Studia Mathematica
%D 2010
%P 79-89
%V 200
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm200-1-5/
%R 10.4064/sm200-1-5
%G en
%F 10_4064_sm200_1_5
Constantin Costara; Dušan Repovš. Nonlinear mappings preserving at least one eigenvalue. Studia Mathematica, Tome 200 (2010) no. 1, pp. 79-89. doi: 10.4064/sm200-1-5