Nonlinear mappings preserving at least one eigenvalue
Studia Mathematica, Tome 200 (2010) no. 1, pp. 79-89

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that if $F$ is a Lipschitz map from the set of all complex $n\times n$ matrices into itself with $F(0)=0$ such that given any $x$ and $y$ we know that $F( x) -F( y) $ and $x-y$ have at least one common eigenvalue, then either $F( x) =uxu^{-1}$ or $F( x) =ux^{t}u^{-1}$ for all $x$, for some invertible $n\times n$ matrix $u$. We arrive at the same conclusion by supposing $F$ to be of class $\mathcal{C}^{1}$ on a domain in $\mathcal{M}_{n}$ containing the null matrix, instead of Lipschitz. We also prove that if $F$ is of class $\mathcal{C}^{1}$ on a domain containing the null matrix satisfying $F(0)=0$ and $\rho (F( x) -F( y) )=\rho (x-y)$ for all $x$ and $y$, where $\rho ( \cdot ) $ denotes the spectral radius, then there exists $\gamma \in \mathbb{C}$ of modulus one such that either $\gamma ^{-1}F$ or $\gamma ^{-1}\overline{F}$ is of the above form, where $\overline{F}$ is the (complex) conjugate of $F$.
DOI : 10.4064/sm200-1-5
Keywords: prove lipschitz map set complex times matrices itself given know f x y have least common eigenvalue either uxu invertible times matrix arrive conclusion supposing class mathcal domain mathcal containing null matrix instead lipschitz prove class mathcal domain containing null matrix satisfying rho f rho x y where rho cdot denotes spectral radius there exists gamma mathbb modulus either gamma gamma overline above form where overline complex conjugate

Constantin Costara 1 ; Dušan Repovš 2

1 Faculty of Mathematics and Informatics Ovidius University Mamaia Blvd. 124 Constanţa, Romania
2 Faculty of Mathematics and Physics and Faculty of Education University of Ljubljana P.O. Box 2964 Ljubljana 1001, Slovenia
@article{10_4064_sm200_1_5,
     author = {Constantin Costara and Du\v{s}an Repov\v{s}},
     title = {Nonlinear mappings preserving at least one eigenvalue},
     journal = {Studia Mathematica},
     pages = {79--89},
     publisher = {mathdoc},
     volume = {200},
     number = {1},
     year = {2010},
     doi = {10.4064/sm200-1-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm200-1-5/}
}
TY  - JOUR
AU  - Constantin Costara
AU  - Dušan Repovš
TI  - Nonlinear mappings preserving at least one eigenvalue
JO  - Studia Mathematica
PY  - 2010
SP  - 79
EP  - 89
VL  - 200
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm200-1-5/
DO  - 10.4064/sm200-1-5
LA  - en
ID  - 10_4064_sm200_1_5
ER  - 
%0 Journal Article
%A Constantin Costara
%A Dušan Repovš
%T Nonlinear mappings preserving at least one eigenvalue
%J Studia Mathematica
%D 2010
%P 79-89
%V 200
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm200-1-5/
%R 10.4064/sm200-1-5
%G en
%F 10_4064_sm200_1_5
Constantin Costara; Dušan Repovš. Nonlinear mappings preserving at least one eigenvalue. Studia Mathematica, Tome 200 (2010) no. 1, pp. 79-89. doi: 10.4064/sm200-1-5

Cité par Sources :