Nonlinear mappings preserving at least one eigenvalue
Studia Mathematica, Tome 200 (2010) no. 1, pp. 79-89
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove that if $F$ is a Lipschitz map from the set of all complex $n\times n$ matrices into itself with $F(0)=0$ such that given any $x$ and $y$ we know that
$F( x) -F( y) $ and $x-y$ have at least one common
eigenvalue, then either $F( x) =uxu^{-1}$ or $F( x)
=ux^{t}u^{-1}$ for all $x$, for some invertible $n\times n$ matrix $u$. We
arrive at the same conclusion by supposing $F$ to be of class $\mathcal{C}^{1}$ on a domain in $\mathcal{M}_{n}$ containing the null matrix, instead
of Lipschitz. We also prove that if $F$ is of class $\mathcal{C}^{1}$ on a
domain containing the null matrix satisfying $F(0)=0$ and $\rho (F( x) -F(
y) )=\rho (x-y)$ for all $x$ and $y$, where $\rho ( \cdot )
$ denotes the spectral radius, then there exists $\gamma \in \mathbb{C}$ of
modulus one such that either $\gamma ^{-1}F$ or $\gamma ^{-1}\overline{F}$
is of the above form, where $\overline{F}$ is the (complex) conjugate of $F$.
Keywords:
prove lipschitz map set complex times matrices itself given know f x y have least common eigenvalue either uxu invertible times matrix arrive conclusion supposing class mathcal domain mathcal containing null matrix instead lipschitz prove class mathcal domain containing null matrix satisfying rho f rho x y where rho cdot denotes spectral radius there exists gamma mathbb modulus either gamma gamma overline above form where overline complex conjugate
Affiliations des auteurs :
Constantin Costara 1 ; Dušan Repovš 2
@article{10_4064_sm200_1_5,
author = {Constantin Costara and Du\v{s}an Repov\v{s}},
title = {Nonlinear mappings preserving at least one eigenvalue},
journal = {Studia Mathematica},
pages = {79--89},
publisher = {mathdoc},
volume = {200},
number = {1},
year = {2010},
doi = {10.4064/sm200-1-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm200-1-5/}
}
TY - JOUR AU - Constantin Costara AU - Dušan Repovš TI - Nonlinear mappings preserving at least one eigenvalue JO - Studia Mathematica PY - 2010 SP - 79 EP - 89 VL - 200 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm200-1-5/ DO - 10.4064/sm200-1-5 LA - en ID - 10_4064_sm200_1_5 ER -
Constantin Costara; Dušan Repovš. Nonlinear mappings preserving at least one eigenvalue. Studia Mathematica, Tome 200 (2010) no. 1, pp. 79-89. doi: 10.4064/sm200-1-5
Cité par Sources :