Algebraic genericity of strict-order integrability
Studia Mathematica, Tome 199 (2010) no. 3, pp. 279-293

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We provide sharp conditions on a measure $\mu$ defined on a measurable space $X$ guaranteeing that the family of functions in the Lebesgue space $L^p(\mu ,X)$ $(p \ge 1)$ which are not $q$-integrable for any $q > p$ (or any $q p$) contains large subspaces of $L^p(\mu ,X)$ (without zero). This improves recent results due to Aron, García, Muñoz, Palmberg, Pérez, Puglisi and Seoane. It is also shown that many non-$q$-integrable functions can even be obtained on any nonempty open subset of $X$, assuming that $X$ is a topological space and $\mu$ is a Borel measure on $X$ with appropriate properties.
DOI : 10.4064/sm199-3-5
Keywords: provide sharp conditions measure defined measurable space guaranteeing family functions lebesgue space which q integrable contains large subspaces without zero improves recent results due aron garc palmberg rez puglisi seoane shown many non q integrable functions even obtained nonempty subset assuming topological space borel measure appropriate properties

Luis Bernal-González 1

1 Facultad de Matemáticas Universidad de Sevilla 41080 Sevilla, Spain
@article{10_4064_sm199_3_5,
     author = {Luis Bernal-Gonz\'alez},
     title = {Algebraic genericity of strict-order integrability},
     journal = {Studia Mathematica},
     pages = {279--293},
     publisher = {mathdoc},
     volume = {199},
     number = {3},
     year = {2010},
     doi = {10.4064/sm199-3-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm199-3-5/}
}
TY  - JOUR
AU  - Luis Bernal-González
TI  - Algebraic genericity of strict-order integrability
JO  - Studia Mathematica
PY  - 2010
SP  - 279
EP  - 293
VL  - 199
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm199-3-5/
DO  - 10.4064/sm199-3-5
LA  - en
ID  - 10_4064_sm199_3_5
ER  - 
%0 Journal Article
%A Luis Bernal-González
%T Algebraic genericity of strict-order integrability
%J Studia Mathematica
%D 2010
%P 279-293
%V 199
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm199-3-5/
%R 10.4064/sm199-3-5
%G en
%F 10_4064_sm199_3_5
Luis Bernal-González. Algebraic genericity of strict-order integrability. Studia Mathematica, Tome 199 (2010) no. 3, pp. 279-293. doi: 10.4064/sm199-3-5

Cité par Sources :