Homomorphisms on algebras of Lipschitz functions
Studia Mathematica, Tome 199 (2010) no. 1, pp. 95-106
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We
characterize a class of $*$-homomorphisms on ${\rm Lip}_*(X,
\mathcal{B}(\mathcal{H})),$ a non-commutative Banach $*$-algebra
of Lipschitz functions on a compact metric space and with values
in $\mathcal{B}(\mathcal{H}).$ We show that the zero map is the
only multiplicative $\ast $-preserving linear functional on
${\rm Lip}_*(X, \mathcal{B}(\mathcal{H})).$ We also establish the
algebraic reflexivity property of a class of $*$-isomorphisms on
${\rm Lip}_*(X, \mathcal{B}(\mathcal{H})).$
Mots-clés :
characterize class * homomorphisms lip * mathcal mathcal non commutative banach * algebra lipschitz functions compact metric space values mathcal mathcal zero map only multiplicative ast preserving linear functional lip * mathcal mathcal establish algebraic reflexivity property class * isomorphisms lip * mathcal mathcal
Affiliations des auteurs :
Fernanda Botelho 1 ; James Jamison 1
@article{10_4064_sm199_1_6,
author = {Fernanda Botelho and James Jamison},
title = {Homomorphisms on algebras of {Lipschitz} functions},
journal = {Studia Mathematica},
pages = {95--106},
publisher = {mathdoc},
volume = {199},
number = {1},
year = {2010},
doi = {10.4064/sm199-1-6},
language = {de},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm199-1-6/}
}
TY - JOUR AU - Fernanda Botelho AU - James Jamison TI - Homomorphisms on algebras of Lipschitz functions JO - Studia Mathematica PY - 2010 SP - 95 EP - 106 VL - 199 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm199-1-6/ DO - 10.4064/sm199-1-6 LA - de ID - 10_4064_sm199_1_6 ER -
Fernanda Botelho; James Jamison. Homomorphisms on algebras of Lipschitz functions. Studia Mathematica, Tome 199 (2010) no. 1, pp. 95-106. doi: 10.4064/sm199-1-6
Cité par Sources :