On the Hermite expansions of functions from the Hardy class
Studia Mathematica, Tome 198 (2010) no. 2, pp. 177-195

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Considering functions $ f $ on $ \mathbb R^n $ for which both $ f $ and $ \hat{f} $ are bounded by the Gaussian $ e^{-\frac{1}{2}a|x|^2} , 0 a 1 $, we show that their Fourier–Hermite coefficients have exponential decay. Optimal decay is obtained for $ O(n)$-finite functions, thus extending a one-dimensional result of Vemuri.
DOI : 10.4064/sm198-2-5
Keywords: considering functions mathbb which hat bounded gaussian frac their fourier hermite coefficients have exponential decay optimal decay obtained finite functions extending one dimensional result vemuri

Rahul Garg 1 ; Sundaram Thangavelu 1

1 Department of Mathematics Indian Institute of Science Bangalore 560 012, India
@article{10_4064_sm198_2_5,
     author = {Rahul Garg and Sundaram Thangavelu},
     title = {On the {Hermite} expansions of functions
from the {Hardy} class},
     journal = {Studia Mathematica},
     pages = {177--195},
     publisher = {mathdoc},
     volume = {198},
     number = {2},
     year = {2010},
     doi = {10.4064/sm198-2-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm198-2-5/}
}
TY  - JOUR
AU  - Rahul Garg
AU  - Sundaram Thangavelu
TI  - On the Hermite expansions of functions
from the Hardy class
JO  - Studia Mathematica
PY  - 2010
SP  - 177
EP  - 195
VL  - 198
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm198-2-5/
DO  - 10.4064/sm198-2-5
LA  - en
ID  - 10_4064_sm198_2_5
ER  - 
%0 Journal Article
%A Rahul Garg
%A Sundaram Thangavelu
%T On the Hermite expansions of functions
from the Hardy class
%J Studia Mathematica
%D 2010
%P 177-195
%V 198
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm198-2-5/
%R 10.4064/sm198-2-5
%G en
%F 10_4064_sm198_2_5
Rahul Garg; Sundaram Thangavelu. On the Hermite expansions of functions
from the Hardy class. Studia Mathematica, Tome 198 (2010) no. 2, pp. 177-195. doi: 10.4064/sm198-2-5

Cité par Sources :