On the Hermite expansions of functions
from the Hardy class
Studia Mathematica, Tome 198 (2010) no. 2, pp. 177-195
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Considering functions $ f $ on $ \mathbb R^n $ for which both $ f $ and $
\hat{f} $ are bounded by the Gaussian $ e^{-\frac{1}{2}a|x|^2} , 0
a 1 $, we show that their Fourier–Hermite coefficients have
exponential decay. Optimal decay is obtained for $ O(n)$-finite
functions, thus extending a one-dimensional result of Vemuri.
Keywords:
considering functions mathbb which hat bounded gaussian frac their fourier hermite coefficients have exponential decay optimal decay obtained finite functions extending one dimensional result vemuri
Affiliations des auteurs :
Rahul Garg 1 ; Sundaram Thangavelu 1
@article{10_4064_sm198_2_5,
author = {Rahul Garg and Sundaram Thangavelu},
title = {On the {Hermite} expansions of functions
from the {Hardy} class},
journal = {Studia Mathematica},
pages = {177--195},
publisher = {mathdoc},
volume = {198},
number = {2},
year = {2010},
doi = {10.4064/sm198-2-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm198-2-5/}
}
TY - JOUR AU - Rahul Garg AU - Sundaram Thangavelu TI - On the Hermite expansions of functions from the Hardy class JO - Studia Mathematica PY - 2010 SP - 177 EP - 195 VL - 198 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm198-2-5/ DO - 10.4064/sm198-2-5 LA - en ID - 10_4064_sm198_2_5 ER -
Rahul Garg; Sundaram Thangavelu. On the Hermite expansions of functions from the Hardy class. Studia Mathematica, Tome 198 (2010) no. 2, pp. 177-195. doi: 10.4064/sm198-2-5
Cité par Sources :