Generalized Weyl's theorem and quasi-affinity
Studia Mathematica, Tome 198 (2010) no. 2, pp. 105-120

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A bounded operator $T\in L(X)$ acting on a Banach space $X$ is said to satisfy generalized Weyl's theorem if the complement in the spectrum of the B-Weyl spectrum is the set of all eigenvalues which are isolated points of the spectrum. We prove that generalized Weyl's theorem holds for several classes of operators, extending previous results of Istrăţescu and Curto–Han. We also consider the preservation of generalized Weyl's theorem between two operators $T\in L(X)$, $S\in L(Y)$ intertwined or asymptotically intertwined by a quasi-affinity $A\in L(X,Y)$.
DOI : 10.4064/sm198-2-1
Keywords: bounded operator acting banach space said satisfy generalized weyls theorem complement spectrum b weyl spectrum set eigenvalues which isolated points spectrum prove generalized weyls theorem holds several classes operators extending previous results istr escu curto han consider preservation generalized weyls theorem between operators intertwined asymptotically intertwined quasi affinity

Pietro Aiena 1 ; Mohammed Berkani 2

1 Dipartimento di Metodi e Modelli Matematici Facoltà di Ingegneria Università di Palermo Viale delle Scienze I-90128 Palermo, Italy
2 Département de Mathématiques Faculté des Sciences Université Mohammed I Oujda, Morocco
@article{10_4064_sm198_2_1,
     author = {Pietro Aiena and Mohammed Berkani},
     title = {Generalized {Weyl's} theorem and quasi-affinity},
     journal = {Studia Mathematica},
     pages = {105--120},
     publisher = {mathdoc},
     volume = {198},
     number = {2},
     year = {2010},
     doi = {10.4064/sm198-2-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm198-2-1/}
}
TY  - JOUR
AU  - Pietro Aiena
AU  - Mohammed Berkani
TI  - Generalized Weyl's theorem and quasi-affinity
JO  - Studia Mathematica
PY  - 2010
SP  - 105
EP  - 120
VL  - 198
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm198-2-1/
DO  - 10.4064/sm198-2-1
LA  - en
ID  - 10_4064_sm198_2_1
ER  - 
%0 Journal Article
%A Pietro Aiena
%A Mohammed Berkani
%T Generalized Weyl's theorem and quasi-affinity
%J Studia Mathematica
%D 2010
%P 105-120
%V 198
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm198-2-1/
%R 10.4064/sm198-2-1
%G en
%F 10_4064_sm198_2_1
Pietro Aiena; Mohammed Berkani. Generalized Weyl's theorem and quasi-affinity. Studia Mathematica, Tome 198 (2010) no. 2, pp. 105-120. doi: 10.4064/sm198-2-1

Cité par Sources :