The continuity of pseudo-differential operators
on weighted local Hardy spaces
Studia Mathematica, Tome 198 (2010) no. 1, pp. 69-77
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We first show that a linear operator which is bounded on $L^2_w$ with $w\in A_1$ can be extended to a bounded operator on the weighted local Hardy space $h^1_w$ if and only if this operator is uniformly bounded on all $h^1_w$-atoms. As an application, we show that every pseudo-differential operator of order zero has a bounded extension to $h^1_w$.
Keywords:
first linear operator which bounded extended bounded operator weighted local hardy space only operator uniformly bounded w atoms application every pseudo differential operator order zero has bounded extension
Affiliations des auteurs :
Ming-Yi Lee 1 ; Chin-Cheng Lin 1 ; Ying-Chieh Lin 1
@article{10_4064_sm198_1_4,
author = {Ming-Yi Lee and Chin-Cheng Lin and Ying-Chieh Lin},
title = {The continuity of pseudo-differential operators
on weighted local {Hardy} spaces},
journal = {Studia Mathematica},
pages = {69--77},
year = {2010},
volume = {198},
number = {1},
doi = {10.4064/sm198-1-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm198-1-4/}
}
TY - JOUR AU - Ming-Yi Lee AU - Chin-Cheng Lin AU - Ying-Chieh Lin TI - The continuity of pseudo-differential operators on weighted local Hardy spaces JO - Studia Mathematica PY - 2010 SP - 69 EP - 77 VL - 198 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm198-1-4/ DO - 10.4064/sm198-1-4 LA - en ID - 10_4064_sm198_1_4 ER -
%0 Journal Article %A Ming-Yi Lee %A Chin-Cheng Lin %A Ying-Chieh Lin %T The continuity of pseudo-differential operators on weighted local Hardy spaces %J Studia Mathematica %D 2010 %P 69-77 %V 198 %N 1 %U http://geodesic.mathdoc.fr/articles/10.4064/sm198-1-4/ %R 10.4064/sm198-1-4 %G en %F 10_4064_sm198_1_4
Ming-Yi Lee; Chin-Cheng Lin; Ying-Chieh Lin. The continuity of pseudo-differential operators on weighted local Hardy spaces. Studia Mathematica, Tome 198 (2010) no. 1, pp. 69-77. doi: 10.4064/sm198-1-4
Cité par Sources :