Dimension functions, scaling sequences, and wavelet
sets
Studia Mathematica, Tome 198 (2010) no. 1, pp. 1-32
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
The
paper is a continuation of our study of dimension functions of
orthonormal wavelets on the real line with dyadic dilations. The
main result of Section 2 is Theorem 2.8 which provides
an explicit reconstruction of the underlying generalized
multiresolution analysis for any MSF wavelet. In Section 3 we
reobtain a result of Bownik, Rzeszotnik and Speegle which states
that for each dimension function $D$ there exists an MSF wavelet
whose dimension function coincides with $D$. Our method provides a
completely new explicit construction of an admissible generalized
multiresolution analysis (and, a posteriori, of a wavelet) from an
arbitrary dimension function. Several examples are included.
Keywords:
paper continuation study dimension functions orthonormal wavelets real line dyadic dilations main result section nbsp theorem which provides explicit reconstruction underlying generalized multiresolution analysis msf wavelet section reobtain result bownik rzeszotnik speegle which states each dimension function there exists msf wavelet whose dimension function coincides method provides completely explicit construction admissible generalized multiresolution analysis posteriori wavelet arbitrary dimension function several examples included
Affiliations des auteurs :
Arambašić Ljiljana 1 ; Damir Bakić 1 ; Rajna Rajić 2
@article{10_4064_sm198_1_1,
author = {Aramba\v{s}i\'c Ljiljana and Damir Baki\'c and Rajna Raji\'c},
title = {Dimension functions, scaling sequences, and wavelet
sets},
journal = {Studia Mathematica},
pages = {1--32},
year = {2010},
volume = {198},
number = {1},
doi = {10.4064/sm198-1-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm198-1-1/}
}
TY - JOUR AU - Arambašić Ljiljana AU - Damir Bakić AU - Rajna Rajić TI - Dimension functions, scaling sequences, and wavelet sets JO - Studia Mathematica PY - 2010 SP - 1 EP - 32 VL - 198 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm198-1-1/ DO - 10.4064/sm198-1-1 LA - en ID - 10_4064_sm198_1_1 ER -
Arambašić Ljiljana; Damir Bakić; Rajna Rajić. Dimension functions, scaling sequences, and wavelet sets. Studia Mathematica, Tome 198 (2010) no. 1, pp. 1-32. doi: 10.4064/sm198-1-1
Cité par Sources :