Dimension functions, scaling sequences, and wavelet sets
Studia Mathematica, Tome 198 (2010) no. 1, pp. 1-32 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

The paper is a continuation of our study of dimension functions of orthonormal wavelets on the real line with dyadic dilations. The main result of Section 2 is Theorem 2.8 which provides an explicit reconstruction of the underlying generalized multiresolution analysis for any MSF wavelet. In Section 3 we reobtain a result of Bownik, Rzeszotnik and Speegle which states that for each dimension function $D$ there exists an MSF wavelet whose dimension function coincides with $D$. Our method provides a completely new explicit construction of an admissible generalized multiresolution analysis (and, a posteriori, of a wavelet) from an arbitrary dimension function. Several examples are included.
DOI : 10.4064/sm198-1-1
Keywords: paper continuation study dimension functions orthonormal wavelets real line dyadic dilations main result section nbsp theorem which provides explicit reconstruction underlying generalized multiresolution analysis msf wavelet section reobtain result bownik rzeszotnik speegle which states each dimension function there exists msf wavelet whose dimension function coincides method provides completely explicit construction admissible generalized multiresolution analysis posteriori wavelet arbitrary dimension function several examples included

Arambašić Ljiljana 1 ; Damir Bakić 1 ; Rajna Rajić 2

1 Department of Mathematics University of Zagreb Bijenička c. 30 10000 Zagreb, Croatia
2 Faculty of Mining, Geology and Petroleum Engineering University of Zagreb Pierottijeva 6 10000 Zagreb, Croatia
@article{10_4064_sm198_1_1,
     author = {Aramba\v{s}i\'c Ljiljana and Damir Baki\'c and Rajna Raji\'c},
     title = {Dimension functions, scaling sequences, and wavelet
sets},
     journal = {Studia Mathematica},
     pages = {1--32},
     year = {2010},
     volume = {198},
     number = {1},
     doi = {10.4064/sm198-1-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm198-1-1/}
}
TY  - JOUR
AU  - Arambašić Ljiljana
AU  - Damir Bakić
AU  - Rajna Rajić
TI  - Dimension functions, scaling sequences, and wavelet
sets
JO  - Studia Mathematica
PY  - 2010
SP  - 1
EP  - 32
VL  - 198
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm198-1-1/
DO  - 10.4064/sm198-1-1
LA  - en
ID  - 10_4064_sm198_1_1
ER  - 
%0 Journal Article
%A Arambašić Ljiljana
%A Damir Bakić
%A Rajna Rajić
%T Dimension functions, scaling sequences, and wavelet
sets
%J Studia Mathematica
%D 2010
%P 1-32
%V 198
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm198-1-1/
%R 10.4064/sm198-1-1
%G en
%F 10_4064_sm198_1_1
Arambašić Ljiljana; Damir Bakić; Rajna Rajić. Dimension functions, scaling sequences, and wavelet
sets. Studia Mathematica, Tome 198 (2010) no. 1, pp. 1-32. doi: 10.4064/sm198-1-1

Cité par Sources :