Wasserstein metric and subordination
Studia Mathematica, Tome 189 (2008) no. 1, pp. 35-52
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $(X,d_X)$, $({\mit\Omega},d_{{\mit\Omega}})$ be complete separable
metric spaces. Denote by $\mathcal P(X)$ the space of probability
measures on $X$, by $W_p$ the $p$-Wasserstein metric with
some $p \in [1,\infty)$, and by $\mathcal P_p(X)$ the space of
probability measures on $X$ with finite Wasserstein distance from
any point measure. Let
$f: {\mit\Omega} \to \mathcal P_p(X)$, $\omega \mapsto f_{\omega}$,
be a Borel map such that $f$ is a contraction from
$({\mit\Omega},d_{{\mit\Omega}})$ into $(\mathcal P_p(X),W_p)$. Let
$\nu_1,\nu_2$ be probability measures on ${\mit\Omega}$ with
$W_p(\nu_1,\nu_2)$ finite. On $X$ we
consider the subordinated measures
$\mu_i=\int_{{\mit\Omega}}f_{\omega}
\, d\nu_i(\omega).$
Then
$W_p(\mu_1,\mu_2) \le W_p(\nu_1,\nu_2).$
As an application we show that the solution measures $\varrho_{\alpha}(t)$ to
the partial differential equation
\[
\frac{\partial}{\partial t}\varrho_{\alpha}(t) =
-(-{\mit\Delta})^{\alpha/2}\varrho_{\alpha}(t), \quad
\varrho_{\alpha}(0) = \delta_0 \quad \hbox{(the Dirac measure at 0)},
\]
depend absolutely continuously on $t$ with respect to the Wasserstein metric $W_p$ whenever
$1\le p \alpha 2$.
Mots-clés :
mit omega mit omega complete separable metric spaces denote mathcal space probability measures p wasserstein metric infty mathcal space probability measures finite wasserstein distance point measure mit omega mathcal omega mapsto omega borel map contraction mit omega mit omega mathcal probability measures mit omega finite consider subordinated measures int mit omega omega omega application solution measures varrho alpha partial differential equation frac partial partial varrho alpha mit delta alpha varrho alpha quad varrho alpha delta quad hbox dirac measure depend absolutely continuously respect wasserstein metric whenever alpha
Affiliations des auteurs :
Philippe Clément 1 ; Wolfgang Desch 2
@article{10_4064_sm189_1_4,
author = {Philippe Cl\'ement and Wolfgang Desch},
title = {Wasserstein metric and subordination},
journal = {Studia Mathematica},
pages = {35--52},
publisher = {mathdoc},
volume = {189},
number = {1},
year = {2008},
doi = {10.4064/sm189-1-4},
language = {de},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm189-1-4/}
}
Philippe Clément; Wolfgang Desch. Wasserstein metric and subordination. Studia Mathematica, Tome 189 (2008) no. 1, pp. 35-52. doi: 10.4064/sm189-1-4
Cité par Sources :