The complemented subspace problem revisited
Studia Mathematica, Tome 188 (2008) no. 3, pp. 223-257

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show that if $X$ is an infinite-dimensional Banach space in which every finite-dimensional subspace is $\lambda$-complemented with $\lambda\le 2$ then $X$ is $(1+C\sqrt{\lambda-1})$-isomorphic to a Hilbert space, where $C$ is an absolute constant; this estimate (up to the constant $C$) is best possible. This answers a question of Kadets and Mityagin from 1973. We also investigate the finite-dimensional versions of the theorem.
DOI : 10.4064/sm188-3-2
Keywords: infinite dimensional banach space which every finite dimensional subspace lambda complemented lambda sqrt lambda isomorphic hilbert space where absolute constant estimate constant best possible answers question kadets mityagin investigate finite dimensional versions theorem

N. J. Kalton 1

1 Department of Mathematics University of Missouri-Columbia Columbia, MO 65211, U.S.A.
@article{10_4064_sm188_3_2,
     author = {N. J. Kalton},
     title = {The complemented subspace problem revisited},
     journal = {Studia Mathematica},
     pages = {223--257},
     publisher = {mathdoc},
     volume = {188},
     number = {3},
     year = {2008},
     doi = {10.4064/sm188-3-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm188-3-2/}
}
TY  - JOUR
AU  - N. J. Kalton
TI  - The complemented subspace problem revisited
JO  - Studia Mathematica
PY  - 2008
SP  - 223
EP  - 257
VL  - 188
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm188-3-2/
DO  - 10.4064/sm188-3-2
LA  - en
ID  - 10_4064_sm188_3_2
ER  - 
%0 Journal Article
%A N. J. Kalton
%T The complemented subspace problem revisited
%J Studia Mathematica
%D 2008
%P 223-257
%V 188
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm188-3-2/
%R 10.4064/sm188-3-2
%G en
%F 10_4064_sm188_3_2
N. J. Kalton. The complemented subspace problem revisited. Studia Mathematica, Tome 188 (2008) no. 3, pp. 223-257. doi: 10.4064/sm188-3-2

Cité par Sources :