Orlicz–Morrey spaces and the Hardy–Littlewood maximal function
Studia Mathematica, Tome 188 (2008) no. 3, pp. 193-221

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove basic properties of Orlicz–Morrey spaces and give a necessary and sufficient condition for boundedness of the Hardy–Littlewood maximal operator $M$ from one Orlicz–Morrey space to another. For example, if $f\in L(\log L)(\mathbb R^n)$, then $Mf$ is in a (generalized) Morrey space (Example 5.1). As an application of boundedness of $M$, we prove the boundedness of generalized fractional integral operators, improving earlier results of the author.
DOI : 10.4064/sm188-3-1
Keywords: prove basic properties orlicz morrey spaces necessary sufficient condition boundedness hardy littlewood maximal operator orlicz morrey space another example log mathbb generalized morrey space example nbsp application boundedness nbsp prove boundedness generalized fractional integral operators improving earlier results author

Eiichi Nakai 1

1 Department of Mathematics Osaka Kyoiku University Kashiwara, Osaka 582-8582, Japan
@article{10_4064_sm188_3_1,
     author = {Eiichi Nakai},
     title = {Orlicz{\textendash}Morrey spaces and the {Hardy{\textendash}Littlewood} maximal function},
     journal = {Studia Mathematica},
     pages = {193--221},
     publisher = {mathdoc},
     volume = {188},
     number = {3},
     year = {2008},
     doi = {10.4064/sm188-3-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm188-3-1/}
}
TY  - JOUR
AU  - Eiichi Nakai
TI  - Orlicz–Morrey spaces and the Hardy–Littlewood maximal function
JO  - Studia Mathematica
PY  - 2008
SP  - 193
EP  - 221
VL  - 188
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm188-3-1/
DO  - 10.4064/sm188-3-1
LA  - en
ID  - 10_4064_sm188_3_1
ER  - 
%0 Journal Article
%A Eiichi Nakai
%T Orlicz–Morrey spaces and the Hardy–Littlewood maximal function
%J Studia Mathematica
%D 2008
%P 193-221
%V 188
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm188-3-1/
%R 10.4064/sm188-3-1
%G en
%F 10_4064_sm188_3_1
Eiichi Nakai. Orlicz–Morrey spaces and the Hardy–Littlewood maximal function. Studia Mathematica, Tome 188 (2008) no. 3, pp. 193-221. doi: 10.4064/sm188-3-1

Cité par Sources :