Orlicz–Morrey spaces and the Hardy–Littlewood maximal function
Studia Mathematica, Tome 188 (2008) no. 3, pp. 193-221
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove basic properties of Orlicz–Morrey spaces
and give
a necessary and sufficient condition
for boundedness of the Hardy–Littlewood maximal operator $M$
from one Orlicz–Morrey space to another.
For example,
if $f\in L(\log L)(\mathbb R^n)$, then $Mf$ is in a (generalized) Morrey space
(Example 5.1).
As an application of boundedness of $M$,
we prove the boundedness of generalized fractional integral operators,
improving earlier results of the author.
Keywords:
prove basic properties orlicz morrey spaces necessary sufficient condition boundedness hardy littlewood maximal operator orlicz morrey space another example log mathbb generalized morrey space example nbsp application boundedness nbsp prove boundedness generalized fractional integral operators improving earlier results author
Affiliations des auteurs :
Eiichi Nakai 1
@article{10_4064_sm188_3_1,
author = {Eiichi Nakai},
title = {Orlicz{\textendash}Morrey spaces and the {Hardy{\textendash}Littlewood} maximal function},
journal = {Studia Mathematica},
pages = {193--221},
publisher = {mathdoc},
volume = {188},
number = {3},
year = {2008},
doi = {10.4064/sm188-3-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm188-3-1/}
}
Eiichi Nakai. Orlicz–Morrey spaces and the Hardy–Littlewood maximal function. Studia Mathematica, Tome 188 (2008) no. 3, pp. 193-221. doi: 10.4064/sm188-3-1
Cité par Sources :