Can ${\cal B}(\ell^p)$ ever be amenable?
Studia Mathematica, Tome 188 (2008) no. 2, pp. 151-174
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
It is known that ${\cal B}(\ell^p)$ is not amenable for $p =1,2,\infty$, but whether or not ${\cal B}(\ell^p)$ is amenable for $p \in (1,\infty) \setminus \{ 2 \}$ is an open problem. We show that, if ${\cal B}(\ell^p)$ is amenable for $p \in (1,\infty)$, then so are $\ell^\infty({\cal B}(\ell^p))$ and $\ell^\infty({\cal K}(\ell^p))$. Moreover, if $\ell^\infty({\cal K}(\ell^p))$ is amenable so is $\ell^\infty(\mathbb{I},{\cal K}(E))$ for any index set $\mathbb I$ and for any infinite-dimensional ${\cal L}^p$-space~$E$; in particular, if $\ell^\infty({\cal K}(\ell^p))$ is amenable for $p \in (1,\infty)$, then so is ${\ell^\infty({\cal K}(\ell^p \oplus \ell^2))}$. We show that $\ell^\infty({\cal K}(\ell^p \oplus \ell^2))$ is not amenable for $p =1,\infty$, but also that our methods fail us if $p \in (1,\infty)$. Finally, for $p \in (1,2)$ and a free ultrafilter $\cal U$ over
$\mathbb N$, we exhibit a closed left ideal of $({\cal K}(\ell^p))_{\cal U}$ lacking a right approximate identity, but enjoying a certain very weak complementation property.
Keywords:
known cal ell amenable infty whether cal ell amenable infty setminus problem cal ell amenable infty ell infty cal ell ell infty cal ell moreover ell infty cal ell amenable ell infty mathbb cal index set mathbb infinite dimensional cal p space particular ell infty cal ell amenable infty ell infty cal ell oplus ell ell infty cal ell oplus ell amenable infty methods fail infty finally ultrafilter cal mathbb exhibit closed ideal cal ell cal lacking right approximate identity enjoying certain weak complementation property
Affiliations des auteurs :
Matthew Daws 1 ; Volker Runde 2
@article{10_4064_sm188_2_4,
author = {Matthew Daws and Volker Runde},
title = {Can ${\cal B}(\ell^p)$ ever be amenable?},
journal = {Studia Mathematica},
pages = {151--174},
publisher = {mathdoc},
volume = {188},
number = {2},
year = {2008},
doi = {10.4064/sm188-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm188-2-4/}
}
Matthew Daws; Volker Runde. Can ${\cal B}(\ell^p)$ ever be amenable?. Studia Mathematica, Tome 188 (2008) no. 2, pp. 151-174. doi: 10.4064/sm188-2-4
Cité par Sources :