Local and global solutions of well-posed
 integrated Cauchy problems
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 187 (2008) no. 3, pp. 219-232
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              We  study  the local well-posed integrated Cauchy problem
$$
v'(t)=Av(t)+{t^{\alpha }\over {\mit\Gamma} (\alpha+1 )} \, x,\ \quad v(0)=0,
\ \quad t\in [0, \kappa),
$$
with $\kappa>0$, $\alpha \ge 0$,  and $x\in X$, where  $X$ is a Banach space and $A$  
a closed operator on $X$. We extend
solutions increasing the regularity in $\alpha $.
The global case $(\kappa=\infty)$ is also treated in
detail.  Growth of solutions is  given  in both cases.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
study local well posed integrated cauchy problem alpha mit gamma alpha quad quad kappa kappa alpha where banach space closed operator nbsp extend solutions increasing regularity alpha global kappa infty treated detail growth solutions given cases
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              Pedro J. Miana 1
@article{10_4064_sm187_3_2,
     author = {Pedro J. Miana},
     title = {Local and global solutions of well-posed
 integrated {Cauchy} problems},
     journal = {Studia Mathematica},
     pages = {219--232},
     publisher = {mathdoc},
     volume = {187},
     number = {3},
     year = {2008},
     doi = {10.4064/sm187-3-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm187-3-2/}
}
                      
                      
                    TY - JOUR AU - Pedro J. Miana TI - Local and global solutions of well-posed integrated Cauchy problems JO - Studia Mathematica PY - 2008 SP - 219 EP - 232 VL - 187 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm187-3-2/ DO - 10.4064/sm187-3-2 LA - en ID - 10_4064_sm187_3_2 ER -
Pedro J. Miana. Local and global solutions of well-posed integrated Cauchy problems. Studia Mathematica, Tome 187 (2008) no. 3, pp. 219-232. doi: 10.4064/sm187-3-2
Cité par Sources :
