1Department of Mathematics Beijing Institute of Technology Beijing, China, 100081 2LMIB & Department of Mathematics Beihang University Beijing, China, 100083
Studia Mathematica, Tome 186 (2008) no. 3, pp. 267-274
It is proved that if $J_i$ is a Jordan operator on a Hilbert space with the Jordan decomposition $J_i=N_i+Q_i$, where $N_i$ is normal and $Q_i$ is compact and quasinilpotent, $i=1,2$, and the Lie algebra generated by $J_1,J_2$ is an Engel Lie algebra, then the Banach algebra generated by $J_1,J_2$ is an Engel algebra. Some results for normal operators and Jordan operators on Banach spaces are given.
Keywords:
proved jordan operator hilbert space jordan decomposition i where normal compact quasinilpotent lie algebra generated engel lie algebra banach algebra generated engel algebra results normal operators jordan operators banach spaces given
Affiliations des auteurs :
Peng Cao 
1
;
Shanli Sun 
2
1
Department of Mathematics Beijing Institute of Technology Beijing, China, 100081
2
LMIB & Department of Mathematics Beihang University Beijing, China, 100083
@article{10_4064_sm186_3_5,
author = {Peng Cao and Shanli Sun},
title = {Lie algebras generated by {Jordan} operators},
journal = {Studia Mathematica},
pages = {267--274},
year = {2008},
volume = {186},
number = {3},
doi = {10.4064/sm186-3-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm186-3-5/}
}
TY - JOUR
AU - Peng Cao
AU - Shanli Sun
TI - Lie algebras generated by Jordan operators
JO - Studia Mathematica
PY - 2008
SP - 267
EP - 274
VL - 186
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm186-3-5/
DO - 10.4064/sm186-3-5
LA - en
ID - 10_4064_sm186_3_5
ER -
%0 Journal Article
%A Peng Cao
%A Shanli Sun
%T Lie algebras generated by Jordan operators
%J Studia Mathematica
%D 2008
%P 267-274
%V 186
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm186-3-5/
%R 10.4064/sm186-3-5
%G en
%F 10_4064_sm186_3_5
Peng Cao; Shanli Sun. Lie algebras generated by Jordan operators. Studia Mathematica, Tome 186 (2008) no. 3, pp. 267-274. doi: 10.4064/sm186-3-5