On linear extension for interpolating sequences
Studia Mathematica, Tome 186 (2008) no. 3, pp. 251-265
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $A$ be a uniform algebra on $X$ and $\sigma $ a probability measure
on $X$. We define the Hardy spaces $H^{p}(\sigma )$ and the $H^{p}(\sigma )$ interpolating sequences $S$ in the $p$-spectrum ${\mathcal{M}}_{p}$
of $\sigma $. We prove, under some structural hypotheses on $A$ and $\sigma $,
that if $S$ is a “dual bounded” Carleson sequence, then
$S$ is $ H^{s}(\sigma )$-interpolating with a linear extension
operator for $ s p$, provided that either $p=\infty $ or
$p\leq 2$.In the case of the unit ball of ${\mathbb{C}}^{n}$ we find,
for instance, that if $S$ is dual bounded in $H^{\infty }({\mathbb{B}})$
then $S$ is $ H^{p}({\mathbb{B}})$-interpolating with a linear
extension operator for any $1\leq p \infty $. Already in this case this
is a new result.
Keywords:
uniform algebra sigma probability measure define hardy spaces sigma sigma interpolating sequences p spectrum mathcal sigma prove under structural hypotheses sigma dual bounded carleson sequence sigma interpolating linear extension operator provided either infty leq the unit ball mathbb instance dual bounded infty mathbb mathbb interpolating linear extension operator leq infty already this result
Affiliations des auteurs :
Eric Amar 1
@article{10_4064_sm186_3_4,
author = {Eric Amar},
title = {On linear extension for interpolating sequences},
journal = {Studia Mathematica},
pages = {251--265},
publisher = {mathdoc},
volume = {186},
number = {3},
year = {2008},
doi = {10.4064/sm186-3-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm186-3-4/}
}
Eric Amar. On linear extension for interpolating sequences. Studia Mathematica, Tome 186 (2008) no. 3, pp. 251-265. doi: 10.4064/sm186-3-4
Cité par Sources :