On linear extension for interpolating sequences
Studia Mathematica, Tome 186 (2008) no. 3, pp. 251-265

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $A$ be a uniform algebra on $X$ and $\sigma $ a probability measure on $X$. We define the Hardy spaces $H^{p}(\sigma )$ and the $H^{p}(\sigma )$ interpolating sequences $S$ in the $p$-spectrum ${\mathcal{M}}_{p}$ of $\sigma $. We prove, under some structural hypotheses on $A$ and $\sigma $, that if $S$ is a “dual bounded” Carleson sequence, then $S$ is $ H^{s}(\sigma )$-interpolating with a linear extension operator for $ s p$, provided that either $p=\infty $ or $p\leq 2$.In the case of the unit ball of ${\mathbb{C}}^{n}$ we find, for instance, that if $S$ is dual bounded in $H^{\infty }({\mathbb{B}})$ then $S$ is $ H^{p}({\mathbb{B}})$-interpolating with a linear extension operator for any $1\leq p \infty $. Already in this case this is a new result.
DOI : 10.4064/sm186-3-4
Keywords: uniform algebra sigma probability measure define hardy spaces sigma sigma interpolating sequences p spectrum mathcal sigma prove under structural hypotheses sigma dual bounded carleson sequence sigma interpolating linear extension operator provided either infty leq the unit ball mathbb instance dual bounded infty mathbb mathbb interpolating linear extension operator leq infty already this result

Eric Amar 1

1 Université Bordeaux I 351 Cours de la Libération 33405 Talence, France
@article{10_4064_sm186_3_4,
     author = {Eric Amar},
     title = {On linear extension for interpolating sequences},
     journal = {Studia Mathematica},
     pages = {251--265},
     publisher = {mathdoc},
     volume = {186},
     number = {3},
     year = {2008},
     doi = {10.4064/sm186-3-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm186-3-4/}
}
TY  - JOUR
AU  - Eric Amar
TI  - On linear extension for interpolating sequences
JO  - Studia Mathematica
PY  - 2008
SP  - 251
EP  - 265
VL  - 186
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm186-3-4/
DO  - 10.4064/sm186-3-4
LA  - en
ID  - 10_4064_sm186_3_4
ER  - 
%0 Journal Article
%A Eric Amar
%T On linear extension for interpolating sequences
%J Studia Mathematica
%D 2008
%P 251-265
%V 186
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm186-3-4/
%R 10.4064/sm186-3-4
%G en
%F 10_4064_sm186_3_4
Eric Amar. On linear extension for interpolating sequences. Studia Mathematica, Tome 186 (2008) no. 3, pp. 251-265. doi: 10.4064/sm186-3-4

Cité par Sources :