Fredholm spectrum and growth of cohomology groups
Studia Mathematica, Tome 186 (2008) no. 3, pp. 237-249

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $T \in L(E)^n$ be a commuting tuple of bounded linear operators on a complex Banach space $E$ and let $\sigma_{\rm F}(T) = \sigma(T) \setminus \sigma_{\rm e}(T)$ be the non-essential spectrum of $T$. We show that, for each connected component $M$ of the manifold ${\rm Reg}(\sigma_{\rm F}(T))$ of all smooth points of $\sigma_{\rm F}(T)$, there is a number $p \in \{0, \ldots , n \}$ such that, for each point $z \in M$, the dimensions of the cohomology groups $H^p ( (z - T)^k,E )$ grow at least like the sequence $(k^d)_{k \geq 1}$ with $d = \dim M.$
DOI : 10.4064/sm186-3-3
Keywords: commuting tuple bounded linear operators complex banach space sigma sigma setminus sigma non essential spectrum each connected component manifold reg sigma smooth points sigma there number ldots each point dimensions cohomology groups grow least sequence geq dim

Jörg Eschmeier 1

1 Fachrichtung Mathematik Universität des Saarlandes Postfach 15 11 50 D-66041 Saarbrücken, Germany
@article{10_4064_sm186_3_3,
     author = {J\"org Eschmeier},
     title = {Fredholm spectrum and growth of  cohomology groups},
     journal = {Studia Mathematica},
     pages = {237--249},
     publisher = {mathdoc},
     volume = {186},
     number = {3},
     year = {2008},
     doi = {10.4064/sm186-3-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm186-3-3/}
}
TY  - JOUR
AU  - Jörg Eschmeier
TI  - Fredholm spectrum and growth of  cohomology groups
JO  - Studia Mathematica
PY  - 2008
SP  - 237
EP  - 249
VL  - 186
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm186-3-3/
DO  - 10.4064/sm186-3-3
LA  - en
ID  - 10_4064_sm186_3_3
ER  - 
%0 Journal Article
%A Jörg Eschmeier
%T Fredholm spectrum and growth of  cohomology groups
%J Studia Mathematica
%D 2008
%P 237-249
%V 186
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm186-3-3/
%R 10.4064/sm186-3-3
%G en
%F 10_4064_sm186_3_3
Jörg Eschmeier. Fredholm spectrum and growth of  cohomology groups. Studia Mathematica, Tome 186 (2008) no. 3, pp. 237-249. doi: 10.4064/sm186-3-3

Cité par Sources :