Fredholm spectrum and growth of cohomology groups
Studia Mathematica, Tome 186 (2008) no. 3, pp. 237-249
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $T \in L(E)^n$ be a commuting tuple of bounded linear
operators on a complex Banach space $E$ and let
$\sigma_{\rm F}(T) = \sigma(T) \setminus \sigma_{\rm e}(T)$ be the
non-essential spectrum of $T$. We show that, for each
connected component $M$ of the manifold ${\rm Reg}(\sigma_{\rm F}(T))$
of all smooth points of $\sigma_{\rm F}(T)$,
there is a number $p \in \{0, \ldots , n \}$
such that, for each point $z \in M$, the dimensions
of the cohomology groups $H^p ( (z - T)^k,E )$
grow at least like the sequence $(k^d)_{k \geq 1}$ with
$d = \dim M.$
Keywords:
commuting tuple bounded linear operators complex banach space sigma sigma setminus sigma non essential spectrum each connected component manifold reg sigma smooth points sigma there number ldots each point dimensions cohomology groups grow least sequence geq dim
Affiliations des auteurs :
Jörg Eschmeier 1
@article{10_4064_sm186_3_3,
author = {J\"org Eschmeier},
title = {Fredholm spectrum and growth of cohomology groups},
journal = {Studia Mathematica},
pages = {237--249},
publisher = {mathdoc},
volume = {186},
number = {3},
year = {2008},
doi = {10.4064/sm186-3-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm186-3-3/}
}
Jörg Eschmeier. Fredholm spectrum and growth of cohomology groups. Studia Mathematica, Tome 186 (2008) no. 3, pp. 237-249. doi: 10.4064/sm186-3-3
Cité par Sources :