Non-autonomous stochastic Cauchy problems in Banach spaces
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 185 (2008) no. 1, pp. 1-34
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              We study the non-autonomous stochastic Cauchy
problem on a real Banach space $E$,
$$\eqalign{
d U(t)  = A(t) U(t) \, dt + B(t)\, d W_H(t), \ \ t\in [0,T],
 U(0)  = u_0.
}$$
Here, $W_H$ is a cylindrical Brownian motion on a real separable
Hilbert space $H$, $(B(t))_{t\in [0,T]}\!$ are closed and densely
defined operators from a constant domain $\mathcal D(B)\subset H$ into $E$,
$(A(t))_{t\in [0,T]}$ denotes the generator of an evolution family
on $E$, and $u_0\in E$. In the first part, we study existence of
weak and mild solutions by methods of van Neerven and Weis. Then we
use a well-known factorisation method in the setting of evolution
families to obtain time regularity of the solution. In the second
part, we consider the parabolic case in the setting of Acquistapace
and Terreni. By means of a factorisation method in the spirit of Da
Prato, Kwapień, and Zabczyk we obtain space-time regularity
results for parabolic evolution families on Banach
spaces. We apply this theory to several examples. In the
last part, relying on recent results of Dettweiler, van Neerven, and
Weis, we prove a maximal regularity result where the $A(t)$ are as
in the setting of Kato and Tanabe.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
study non autonomous stochastic cauchy problem real banach space eqalign t here cylindrical brownian motion real separable hilbert space closed densely defined operators constant domain mathcal subset denotes generator evolution family first part study existence weak mild solutions methods van neerven weis well known factorisation method setting evolution families obtain time regularity solution second part consider parabolic setting acquistapace terreni means factorisation method spirit prato kwapie zabczyk obtain space time regularity results parabolic evolution families banach spaces apply theory several examples part relying recent results dettweiler van neerven weis prove maximal regularity result where setting kato tanabe
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              Mark Veraar 1 ; Jan Zimmerschied 2
@article{10_4064_sm185_1_1,
     author = {Mark Veraar and Jan Zimmerschied},
     title = {Non-autonomous stochastic {Cauchy} problems in {Banach} spaces},
     journal = {Studia Mathematica},
     pages = {1--34},
     publisher = {mathdoc},
     volume = {185},
     number = {1},
     year = {2008},
     doi = {10.4064/sm185-1-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm185-1-1/}
}
                      
                      
                    TY - JOUR AU - Mark Veraar AU - Jan Zimmerschied TI - Non-autonomous stochastic Cauchy problems in Banach spaces JO - Studia Mathematica PY - 2008 SP - 1 EP - 34 VL - 185 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm185-1-1/ DO - 10.4064/sm185-1-1 LA - en ID - 10_4064_sm185_1_1 ER -
Mark Veraar; Jan Zimmerschied. Non-autonomous stochastic Cauchy problems in Banach spaces. Studia Mathematica, Tome 185 (2008) no. 1, pp. 1-34. doi: 10.4064/sm185-1-1
Cité par Sources :
