Open partial isometries and positivity
in operator spaces
Studia Mathematica, Tome 182 (2007) no. 3, pp. 227-262
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We first study positivity in $C^*$-modules using tripotents (= partial
isometries) which are what we call open. This is then used to
study ordered operator spaces via an “ordered noncommutative Shilov
boundary” which we introduce.
This boundary satisfies the usual universal diagram/property
of the noncommutative Shilov boundary, but with all the arrows
completely positive. Because of their independent interest, we also
systematically study open tripotents and their properties.
Keywords:
first study positivity * modules using tripotents partial isometries which what call study ordered operator spaces via ordered noncommutative shilov boundary which introduce boundary satisfies usual universal diagram property noncommutative shilov boundary arrows completely positive because their independent interest systematically study tripotents their properties
Affiliations des auteurs :
David P. Blecher 1 ; Matthew Neal 2
@article{10_4064_sm182_3_4,
author = {David P. Blecher and Matthew Neal},
title = {Open partial isometries and positivity
in operator spaces},
journal = {Studia Mathematica},
pages = {227--262},
publisher = {mathdoc},
volume = {182},
number = {3},
year = {2007},
doi = {10.4064/sm182-3-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm182-3-4/}
}
TY - JOUR AU - David P. Blecher AU - Matthew Neal TI - Open partial isometries and positivity in operator spaces JO - Studia Mathematica PY - 2007 SP - 227 EP - 262 VL - 182 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm182-3-4/ DO - 10.4064/sm182-3-4 LA - en ID - 10_4064_sm182_3_4 ER -
David P. Blecher; Matthew Neal. Open partial isometries and positivity in operator spaces. Studia Mathematica, Tome 182 (2007) no. 3, pp. 227-262. doi: 10.4064/sm182-3-4
Cité par Sources :