1Department of Mathematics University of Houston Houston, TX 77204-3008, U.S.A. 2Department of Mathematics Denison University Granville, OH 43023, U.S.A.
Studia Mathematica, Tome 182 (2007) no. 3, pp. 227-262
We first study positivity in $C^*$-modules using tripotents (= partial
isometries) which are what we call open. This is then used to
study ordered operator spaces via an “ordered noncommutative Shilov
boundary” which we introduce.
This boundary satisfies the usual universal diagram/property
of the noncommutative Shilov boundary, but with all the arrows
completely positive. Because of their independent interest, we also
systematically study open tripotents and their properties.
Keywords:
first study positivity * modules using tripotents partial isometries which what call study ordered operator spaces via ordered noncommutative shilov boundary which introduce boundary satisfies usual universal diagram property noncommutative shilov boundary arrows completely positive because their independent interest systematically study tripotents their properties
Affiliations des auteurs :
David P. Blecher 
1
;
Matthew Neal 
2
1
Department of Mathematics University of Houston Houston, TX 77204-3008, U.S.A.
2
Department of Mathematics Denison University Granville, OH 43023, U.S.A.
@article{10_4064_sm182_3_4,
author = {David P. Blecher and Matthew Neal},
title = {Open partial isometries and positivity
in operator spaces},
journal = {Studia Mathematica},
pages = {227--262},
year = {2007},
volume = {182},
number = {3},
doi = {10.4064/sm182-3-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm182-3-4/}
}
TY - JOUR
AU - David P. Blecher
AU - Matthew Neal
TI - Open partial isometries and positivity
in operator spaces
JO - Studia Mathematica
PY - 2007
SP - 227
EP - 262
VL - 182
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm182-3-4/
DO - 10.4064/sm182-3-4
LA - en
ID - 10_4064_sm182_3_4
ER -
%0 Journal Article
%A David P. Blecher
%A Matthew Neal
%T Open partial isometries and positivity
in operator spaces
%J Studia Mathematica
%D 2007
%P 227-262
%V 182
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm182-3-4/
%R 10.4064/sm182-3-4
%G en
%F 10_4064_sm182_3_4
David P. Blecher; Matthew Neal. Open partial isometries and positivity
in operator spaces. Studia Mathematica, Tome 182 (2007) no. 3, pp. 227-262. doi: 10.4064/sm182-3-4