Open partial isometries and positivity in operator spaces
Studia Mathematica, Tome 182 (2007) no. 3, pp. 227-262

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We first study positivity in $C^*$-modules using tripotents (= partial isometries) which are what we call open. This is then used to study ordered operator spaces via an “ordered noncommutative Shilov boundary” which we introduce. This boundary satisfies the usual universal diagram/property of the noncommutative Shilov boundary, but with all the arrows completely positive. Because of their independent interest, we also systematically study open tripotents and their properties.
DOI : 10.4064/sm182-3-4
Keywords: first study positivity * modules using tripotents partial isometries which what call study ordered operator spaces via ordered noncommutative shilov boundary which introduce boundary satisfies usual universal diagram property noncommutative shilov boundary arrows completely positive because their independent interest systematically study tripotents their properties

David P. Blecher 1 ; Matthew Neal 2

1 Department of Mathematics University of Houston Houston, TX 77204-3008, U.S.A.
2 Department of Mathematics Denison University Granville, OH 43023, U.S.A.
@article{10_4064_sm182_3_4,
     author = {David P. Blecher and Matthew Neal},
     title = {Open partial isometries and positivity
 in operator spaces},
     journal = {Studia Mathematica},
     pages = {227--262},
     publisher = {mathdoc},
     volume = {182},
     number = {3},
     year = {2007},
     doi = {10.4064/sm182-3-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm182-3-4/}
}
TY  - JOUR
AU  - David P. Blecher
AU  - Matthew Neal
TI  - Open partial isometries and positivity
 in operator spaces
JO  - Studia Mathematica
PY  - 2007
SP  - 227
EP  - 262
VL  - 182
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm182-3-4/
DO  - 10.4064/sm182-3-4
LA  - en
ID  - 10_4064_sm182_3_4
ER  - 
%0 Journal Article
%A David P. Blecher
%A Matthew Neal
%T Open partial isometries and positivity
 in operator spaces
%J Studia Mathematica
%D 2007
%P 227-262
%V 182
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm182-3-4/
%R 10.4064/sm182-3-4
%G en
%F 10_4064_sm182_3_4
David P. Blecher; Matthew Neal. Open partial isometries and positivity
 in operator spaces. Studia Mathematica, Tome 182 (2007) no. 3, pp. 227-262. doi: 10.4064/sm182-3-4

Cité par Sources :