1Department of Mathematics and Mechanics St. Petersburg State University Bibliotechnaya pl. 2 198504, Stary Peterhof, Russia 2Mathématique (IRMA) Université Louis-Pasteur et C.N.R.S. 7 rue René Descartes 67084 Strasbourg Cedex, France
Studia Mathematica, Tome 182 (2007) no. 1, pp. 41-65
We study the supremum of some random
Dirichlet polynomials
$D_N(t)=\sum_{n=2}^N\varepsilon_n d_n n^{-\sigma - it}$,
where $(\varepsilon_n)$ is a sequence of independent Rademacher
random variables,
the weights $(d_n)$ are multiplicative and $0\le \sigma 1/2$.
Particular attention is given to the polynomials
$\sum_{n\in {\cal E}_\tau}\varepsilon_n n^{-\sigma - it}$,
${\cal E}_\tau=\{2\le n\le N\!: \! P^+(n)\le
p_\tau\}$, $P^+(n)$ being the largest prime divisor
of $n$. We obtain sharp upper and lower bounds for
the supremum expectation
that extend the optimal estimate of Halász–Queffélec,
$$
{\mathbb E}\, \sup_{t \in \mathbb R}
\Big|\sum_{n=2}^N \varepsilon_n n^{-\sigma - it}\Big| \approx
{N^{1-\sigma }\over \log N}.
$$
The proofs are entirely based on methods of
stochastic processes, in particular the metric entropy method.
Keywords:
study supremum random dirichlet polynomials sum varepsilon n sigma where varepsilon sequence independent rademacher random variables weights multiplicative sigma particular attention given polynomials sum cal tau varepsilon sigma cal tau tau being largest prime divisor obtain sharp upper lower bounds supremum expectation extend optimal estimate hal queff lec mathbb sup mathbb sum varepsilon sigma approx sigma log proofs entirely based methods stochastic processes particular metric entropy method
Affiliations des auteurs :
Mikhail Lifshits 
1
;
Michel Weber 
2
1
Department of Mathematics and Mechanics St. Petersburg State University Bibliotechnaya pl. 2 198504, Stary Peterhof, Russia
2
Mathématique (IRMA) Université Louis-Pasteur et C.N.R.S. 7 rue René Descartes 67084 Strasbourg Cedex, France
@article{10_4064_sm182_1_3,
author = {Mikhail Lifshits and Michel Weber},
title = {On the supremum of random {Dirichlet} polynomials},
journal = {Studia Mathematica},
pages = {41--65},
year = {2007},
volume = {182},
number = {1},
doi = {10.4064/sm182-1-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm182-1-3/}
}
TY - JOUR
AU - Mikhail Lifshits
AU - Michel Weber
TI - On the supremum of random Dirichlet polynomials
JO - Studia Mathematica
PY - 2007
SP - 41
EP - 65
VL - 182
IS - 1
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm182-1-3/
DO - 10.4064/sm182-1-3
LA - en
ID - 10_4064_sm182_1_3
ER -
%0 Journal Article
%A Mikhail Lifshits
%A Michel Weber
%T On the supremum of random Dirichlet polynomials
%J Studia Mathematica
%D 2007
%P 41-65
%V 182
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm182-1-3/
%R 10.4064/sm182-1-3
%G en
%F 10_4064_sm182_1_3
Mikhail Lifshits; Michel Weber. On the supremum of random Dirichlet polynomials. Studia Mathematica, Tome 182 (2007) no. 1, pp. 41-65. doi: 10.4064/sm182-1-3