A geometric approach to accretivity
Studia Mathematica, Tome 181 (2007) no. 1, pp. 87-100

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We establish a connection between generalized accretive operators introduced by F. E. Browder and the theory of quasisymmetric mappings in Banach spaces pioneered by J. Väisälä. The interplay of the two fields allows for geometric proofs of continuity, differentiability, and surjectivity of generalized accretive operators.
DOI : 10.4064/sm181-1-6
Keywords: establish connection between generalized accretive operators introduced browder theory quasisymmetric mappings banach spaces pioneered interplay fields allows geometric proofs continuity differentiability surjectivity generalized accretive operators

Leonid V. Kovalev 1

1 Department of Mathematics, Mailstop 3368 Texas A&M University College Station, TX 77843-3368, U.S.A.
@article{10_4064_sm181_1_6,
     author = {Leonid V. Kovalev},
     title = {A geometric approach to accretivity},
     journal = {Studia Mathematica},
     pages = {87--100},
     publisher = {mathdoc},
     volume = {181},
     number = {1},
     year = {2007},
     doi = {10.4064/sm181-1-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm181-1-6/}
}
TY  - JOUR
AU  - Leonid V. Kovalev
TI  - A geometric approach to accretivity
JO  - Studia Mathematica
PY  - 2007
SP  - 87
EP  - 100
VL  - 181
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm181-1-6/
DO  - 10.4064/sm181-1-6
LA  - en
ID  - 10_4064_sm181_1_6
ER  - 
%0 Journal Article
%A Leonid V. Kovalev
%T A geometric approach to accretivity
%J Studia Mathematica
%D 2007
%P 87-100
%V 181
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm181-1-6/
%R 10.4064/sm181-1-6
%G en
%F 10_4064_sm181_1_6
Leonid V. Kovalev. A geometric approach to accretivity. Studia Mathematica, Tome 181 (2007) no. 1, pp. 87-100. doi: 10.4064/sm181-1-6

Cité par Sources :