On generalized $a$-Browder's theorem
Studia Mathematica, Tome 180 (2007) no. 3, pp. 285-300

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We characterize the bounded linear operators $T$ satisfying generalized $a$-Browder's theorem, or generalized $a$-Weyl's theorem, by means of localized SVEP, as well as by means of the quasi-nilpotent part $H_0(\lambda I-T)$ as $\lambda$ belongs to certain sets of $\mathbb C$. In the last part we give a general framework in which generalized $a$-Weyl's theorem follows for several classes of operators.
DOI : 10.4064/sm180-3-7
Keywords: characterize bounded linear operators satisfying generalized a browders theorem generalized a weyls theorem means localized svep means quasi nilpotent part lambda i t lambda belongs certain sets nbsp mathbb part general framework which generalized a weyls theorem follows several classes operators

Pietro Aiena 1 ; T. Len Miller 2

1 Dipartimento di Matematica ed Applicazioni Facoltà di Ingegneria Università di Palermo Viale delle Scienze I-90128 Palermo, Italy
2 Department of Mathematics and Statistics Mississippi State University Starkville, MS 39762, U.S.A.
@article{10_4064_sm180_3_7,
     author = {Pietro Aiena and T. Len Miller},
     title = {On generalized $a${-Browder's} theorem},
     journal = {Studia Mathematica},
     pages = {285--300},
     publisher = {mathdoc},
     volume = {180},
     number = {3},
     year = {2007},
     doi = {10.4064/sm180-3-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm180-3-7/}
}
TY  - JOUR
AU  - Pietro Aiena
AU  - T. Len Miller
TI  - On generalized $a$-Browder's theorem
JO  - Studia Mathematica
PY  - 2007
SP  - 285
EP  - 300
VL  - 180
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm180-3-7/
DO  - 10.4064/sm180-3-7
LA  - en
ID  - 10_4064_sm180_3_7
ER  - 
%0 Journal Article
%A Pietro Aiena
%A T. Len Miller
%T On generalized $a$-Browder's theorem
%J Studia Mathematica
%D 2007
%P 285-300
%V 180
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm180-3-7/
%R 10.4064/sm180-3-7
%G en
%F 10_4064_sm180_3_7
Pietro Aiena; T. Len Miller. On generalized $a$-Browder's theorem. Studia Mathematica, Tome 180 (2007) no. 3, pp. 285-300. doi: 10.4064/sm180-3-7

Cité par Sources :