Spectral projections for the twisted Laplacian
Studia Mathematica, Tome 180 (2007) no. 2, pp. 103-110
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $n \ge 1$, $d=2n$, and let $(x,y)\in \mathbb R^n\times \mathbb R^n$ be
a generic
point in $\mathbb R^{2n}$. The twisted Laplacian
$$
L = -\frac12 \sum_{j=1}^n [ (\partial_{x_j} + iy_j)^2 + (\partial_{y_j} - i x_j)^2
]
$$
has the spectrum
$
\{ n + 2k =\lambda^2: k \hbox{ a nonnegative integer}\}.
$ Let
$P_\lambda$ be the spectral projection onto the (infinite-dimensional)
eigenspace. We find the
optimal exponent $\varrho(p)$ in the estimate
$$
\Vert P_\lambda u \Vert_{L^p(\mathbb R^d)} \lesssim \lambda^{\varrho(p)}
\Vert u \Vert_{L^2(\mathbb R^d)}
$$
for all $p\in[2,\infty]$, improving previous partial results by
Ratnakumar, Rawat and Thangavelu, and by Stempak
and Zienkiewicz. The expression for $\varrho(p)$ is
$$
\varrho(p) = \cases{
1/p - 1/2 \hbox{if $ 2 \le p \le 2(d+1)/(d-1)$,} \cr
(d-2)/2 - {d}/p \hbox{if $ 2(d+1)/(d-1) \le p \le \infty $.}\cr}
$$
Keywords:
mathbb times mathbb generic point mathbb twisted laplacian frac sum partial partial has spectrum lambda hbox nonnegative integer lambda spectral projection infinite dimensional eigenspace optimal exponent varrho estimate vert lambda vert mathbb lesssim lambda varrho vert vert mathbb infty improving previous partial results ratnakumar rawat thangavelu stempak zienkiewicz expression varrho varrho cases hbox d d hbox d infty
Affiliations des auteurs :
Herbert Koch 1 ; Fulvio Ricci 2
@article{10_4064_sm180_2_1,
author = {Herbert Koch and Fulvio Ricci},
title = {Spectral projections for the twisted {Laplacian}},
journal = {Studia Mathematica},
pages = {103--110},
publisher = {mathdoc},
volume = {180},
number = {2},
year = {2007},
doi = {10.4064/sm180-2-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm180-2-1/}
}
Herbert Koch; Fulvio Ricci. Spectral projections for the twisted Laplacian. Studia Mathematica, Tome 180 (2007) no. 2, pp. 103-110. doi: 10.4064/sm180-2-1
Cité par Sources :