Spectral projections for the twisted Laplacian
Studia Mathematica, Tome 180 (2007) no. 2, pp. 103-110

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $n \ge 1$, $d=2n$, and let $(x,y)\in \mathbb R^n\times \mathbb R^n$ be a generic point in $\mathbb R^{2n}$. The twisted Laplacian $$ L = -\frac12 \sum_{j=1}^n [ (\partial_{x_j} + iy_j)^2 + (\partial_{y_j} - i x_j)^2 ] $$ has the spectrum $ \{ n + 2k =\lambda^2: k \hbox{ a nonnegative integer}\}. $ Let $P_\lambda$ be the spectral projection onto the (infinite-dimensional) eigenspace. We find the optimal exponent $\varrho(p)$ in the estimate $$ \Vert P_\lambda u \Vert_{L^p(\mathbb R^d)} \lesssim \lambda^{\varrho(p)} \Vert u \Vert_{L^2(\mathbb R^d)} $$ for all $p\in[2,\infty]$, improving previous partial results by Ratnakumar, Rawat and Thangavelu, and by Stempak and Zienkiewicz. The expression for $\varrho(p)$ is $$ \varrho(p) = \cases{ 1/p - 1/2 \hbox{if $ 2 \le p \le 2(d+1)/(d-1)$,} \cr (d-2)/2 - {d}/p \hbox{if $ 2(d+1)/(d-1) \le p \le \infty $.}\cr} $$
DOI : 10.4064/sm180-2-1
Keywords: mathbb times mathbb generic point mathbb twisted laplacian frac sum partial partial has spectrum lambda hbox nonnegative integer lambda spectral projection infinite dimensional eigenspace optimal exponent varrho estimate vert lambda vert mathbb lesssim lambda varrho vert vert mathbb infty improving previous partial results ratnakumar rawat thangavelu stempak zienkiewicz expression varrho varrho cases hbox d d hbox d infty

Herbert Koch 1 ; Fulvio Ricci 2

1 Mathematisches Institut Universität Bonn Beringstr. 1 53115 Bonn, Germany
2 Scuola Normale Superiore Piazza dei Cavalieri 7 56126 Pisa, Italy
@article{10_4064_sm180_2_1,
     author = {Herbert Koch and Fulvio Ricci},
     title = {Spectral projections for the twisted {Laplacian}},
     journal = {Studia Mathematica},
     pages = {103--110},
     publisher = {mathdoc},
     volume = {180},
     number = {2},
     year = {2007},
     doi = {10.4064/sm180-2-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm180-2-1/}
}
TY  - JOUR
AU  - Herbert Koch
AU  - Fulvio Ricci
TI  - Spectral projections for the twisted Laplacian
JO  - Studia Mathematica
PY  - 2007
SP  - 103
EP  - 110
VL  - 180
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm180-2-1/
DO  - 10.4064/sm180-2-1
LA  - en
ID  - 10_4064_sm180_2_1
ER  - 
%0 Journal Article
%A Herbert Koch
%A Fulvio Ricci
%T Spectral projections for the twisted Laplacian
%J Studia Mathematica
%D 2007
%P 103-110
%V 180
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm180-2-1/
%R 10.4064/sm180-2-1
%G en
%F 10_4064_sm180_2_1
Herbert Koch; Fulvio Ricci. Spectral projections for the twisted Laplacian. Studia Mathematica, Tome 180 (2007) no. 2, pp. 103-110. doi: 10.4064/sm180-2-1

Cité par Sources :