Let $n \ge 1$, $d=2n$, and let $(x,y)\in \mathbb R^n\times \mathbb R^n$ be
a generic
point in $\mathbb R^{2n}$. The twisted Laplacian
$$
L = -\frac12 \sum_{j=1}^n [ (\partial_{x_j} + iy_j)^2 + (\partial_{y_j} - i x_j)^2
]
$$
has the spectrum
$
\{ n + 2k =\lambda^2: k \hbox{ a nonnegative integer}\}.
$ Let
$P_\lambda$ be the spectral projection onto the (infinite-dimensional)
eigenspace. We find the
optimal exponent $\varrho(p)$ in the estimate
$$
\Vert P_\lambda u \Vert_{L^p(\mathbb R^d)} \lesssim \lambda^{\varrho(p)}
\Vert u \Vert_{L^2(\mathbb R^d)}
$$
for all $p\in[2,\infty]$, improving previous partial results by
Ratnakumar, Rawat and Thangavelu, and by Stempak
and Zienkiewicz. The expression for $\varrho(p)$ is
$$
\varrho(p) = \cases{
1/p - 1/2 \hbox{if $ 2 \le p \le 2(d+1)/(d-1)$,} \cr
(d-2)/2 - {d}/p \hbox{if $ 2(d+1)/(d-1) \le p \le \infty $.}\cr}
$$
@article{10_4064_sm180_2_1,
author = {Herbert Koch and Fulvio Ricci},
title = {Spectral projections for the twisted {Laplacian}},
journal = {Studia Mathematica},
pages = {103--110},
year = {2007},
volume = {180},
number = {2},
doi = {10.4064/sm180-2-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm180-2-1/}
}
TY - JOUR
AU - Herbert Koch
AU - Fulvio Ricci
TI - Spectral projections for the twisted Laplacian
JO - Studia Mathematica
PY - 2007
SP - 103
EP - 110
VL - 180
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm180-2-1/
DO - 10.4064/sm180-2-1
LA - en
ID - 10_4064_sm180_2_1
ER -
%0 Journal Article
%A Herbert Koch
%A Fulvio Ricci
%T Spectral projections for the twisted Laplacian
%J Studia Mathematica
%D 2007
%P 103-110
%V 180
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm180-2-1/
%R 10.4064/sm180-2-1
%G en
%F 10_4064_sm180_2_1
Herbert Koch; Fulvio Ricci. Spectral projections for the twisted Laplacian. Studia Mathematica, Tome 180 (2007) no. 2, pp. 103-110. doi: 10.4064/sm180-2-1