Positive $Q$-matrices of graphs
Studia Mathematica, Tome 179 (2007) no. 1, pp. 81-97

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The $Q$-matrix of a connected graph $\mathcal{G}=(V,E)$ is $Q=(q^{\partial(x,y)})_{x,y\in V}$, where $\partial(x,y)$ is the graph distance. Let $q(\mathcal{G})$ be the range of $q\in(-1,1)$ for which the $Q$-matrix is strictly positive. We obtain a sufficient condition for the equality $q(\widetilde{\mathcal{G}})=q(\mathcal{G})$ where $\widetilde{\mathcal{G}}$ is an extension of a finite graph $\mathcal{G}$ by joining a square. Some concrete examples are discussed.
DOI : 10.4064/sm179-1-7
Keywords: q matrix connected graph mathcal partial where partial graph distance mathcal range which q matrix strictly positive obtain sufficient condition equality widetilde mathcal mathcal where widetilde mathcal extension finite graph mathcal joining square concrete examples discussed

Nobuaki Obata 1

1 Graduate School of Information Sciences Tohoku University Sendai 980-8579, Japan
@article{10_4064_sm179_1_7,
     author = {Nobuaki Obata},
     title = {Positive $Q$-matrices of graphs},
     journal = {Studia Mathematica},
     pages = {81--97},
     publisher = {mathdoc},
     volume = {179},
     number = {1},
     year = {2007},
     doi = {10.4064/sm179-1-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm179-1-7/}
}
TY  - JOUR
AU  - Nobuaki Obata
TI  - Positive $Q$-matrices of graphs
JO  - Studia Mathematica
PY  - 2007
SP  - 81
EP  - 97
VL  - 179
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm179-1-7/
DO  - 10.4064/sm179-1-7
LA  - en
ID  - 10_4064_sm179_1_7
ER  - 
%0 Journal Article
%A Nobuaki Obata
%T Positive $Q$-matrices of graphs
%J Studia Mathematica
%D 2007
%P 81-97
%V 179
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm179-1-7/
%R 10.4064/sm179-1-7
%G en
%F 10_4064_sm179_1_7
Nobuaki Obata. Positive $Q$-matrices of graphs. Studia Mathematica, Tome 179 (2007) no. 1, pp. 81-97. doi: 10.4064/sm179-1-7

Cité par Sources :