On the Heyde theorem for discrete Abelian groups
Studia Mathematica, Tome 177 (2006) no. 1, pp. 67-79
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $X$ be a countable discrete Abelian group, ${\rm Aut} (X)$
the set of automorphisms of $X$,
and $ I(X)$ the set of
idempotent distributions on $X$. Assume that
$\alpha_1, \alpha_2, \beta_1, \beta_2 \in {\rm Aut} (X)$ satisfy
$\beta_1\alpha_1^{-1} \pm \beta_2\alpha_2^{-1} \in
{\rm Aut} (X)$. Let $\xi_1, \xi_2$ be independent random variables
with values in $X$ and distributions $\mu_1, \mu_2.$
We prove that the symmetry of the conditional distribution of $L_2
= \beta_1\xi_1 + \beta_2\xi_2$ given $L_1 = \alpha_1\xi_1 +
\alpha_2\xi_2$ implies that $\mu_1, \mu_2 \in I(X)$ if and only if
the group $X$ contains no elements of order two. This theorem can
be considered as an analogue for discrete Abelian groups of the
well-known Heyde theorem where the Gaussian distribution on the
real line is characterized by the symmetry of the conditional
distribution of one linear form given another.
Keywords:
countable discrete abelian group aut set automorphisms set idempotent distributions assume alpha alpha beta beta aut satisfy beta alpha beta alpha aut independent random variables values distributions prove symmetry conditional distribution beta beta given alpha alpha implies only group contains elements order theorem considered analogue discrete abelian groups well known heyde theorem where gaussian distribution real line characterized symmetry conditional distribution linear form given another
Affiliations des auteurs :
G. M. Feldman 1
@article{10_4064_sm177_1_5,
author = {G. M. Feldman},
title = {On the {Heyde} theorem for discrete {Abelian} groups},
journal = {Studia Mathematica},
pages = {67--79},
publisher = {mathdoc},
volume = {177},
number = {1},
year = {2006},
doi = {10.4064/sm177-1-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm177-1-5/}
}
G. M. Feldman. On the Heyde theorem for discrete Abelian groups. Studia Mathematica, Tome 177 (2006) no. 1, pp. 67-79. doi: 10.4064/sm177-1-5
Cité par Sources :