On operators which factor through $l_p$ or $c_0$
Studia Mathematica, Tome 176 (2006) no. 2, pp. 177-190

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $1 p \infty$. Let $X$ be a subspace of a space $Z$ with a shrinking F.D.D. $(E_n)$ which satisfies a block lower-$p$ estimate. Then any bounded linear operator $T$ from $X$ which satisfies an upper-$(C,p)$-tree estimate factors through a subspace of $(\sum F_n)_{l_p}$, where $(F_n)$ is a blocking of $(E_n)$. In particular, we prove that an operator from $L_p\, (2 p \infty)$ satisfies an upper-$(C,p)$-tree estimate if and only if it factors through $l_p$. This gives an answer to a question of W. B. Johnson. We also prove that if $X$ is a Banach space with $X^*$ separable and $T$ is an operator from $X$ which satisfies an upper-$(C,\infty)$-estimate, then $T$ factors through a subspace of $c_0$.
DOI : 10.4064/sm176-2-5
Keywords: infty subspace space shrinking which satisfies block lower p estimate bounded linear operator which satisfies upper tree estimate factors through subspace sum where blocking particular prove operator infty satisfies upper tree estimate only factors through gives answer question johnson prove banach space * separable operator which satisfies upper infty estimate factors through subspace

Bentuo Zheng 1

1 Department of Mathematics Texas A&M University College Station, TX 77843, U.S.A.
@article{10_4064_sm176_2_5,
     author = {Bentuo Zheng},
     title = {On operators which factor through $l_p$ or $c_0$},
     journal = {Studia Mathematica},
     pages = {177--190},
     publisher = {mathdoc},
     volume = {176},
     number = {2},
     year = {2006},
     doi = {10.4064/sm176-2-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm176-2-5/}
}
TY  - JOUR
AU  - Bentuo Zheng
TI  - On operators which factor through $l_p$ or $c_0$
JO  - Studia Mathematica
PY  - 2006
SP  - 177
EP  - 190
VL  - 176
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm176-2-5/
DO  - 10.4064/sm176-2-5
LA  - en
ID  - 10_4064_sm176_2_5
ER  - 
%0 Journal Article
%A Bentuo Zheng
%T On operators which factor through $l_p$ or $c_0$
%J Studia Mathematica
%D 2006
%P 177-190
%V 176
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm176-2-5/
%R 10.4064/sm176-2-5
%G en
%F 10_4064_sm176_2_5
Bentuo Zheng. On operators which factor through $l_p$ or $c_0$. Studia Mathematica, Tome 176 (2006) no. 2, pp. 177-190. doi: 10.4064/sm176-2-5

Cité par Sources :