On a Sobolev type inequality and its applications
Studia Mathematica, Tome 176 (2006) no. 2, pp. 113-137
Assume $\|\cdot\|$ is a norm on $\mathbb R^n$ and $\|\cdot\|_{\ast}$ its dual.
Consider the closed ball $T:=B_{\|\cdot\|}(0,r)$, $r>0$.
Suppose $\varphi$ is an Orlicz function and $\psi$ its conjugate.
We prove that for arbitrary $A,B>0$ and for each Lipschitz function $f$
on $T$,
$$\eqalign{
\sup_{s,t\in T}|f(s)-f(t)|\leq{}
6AB\bigg(\int^r_{0}\psi\bigg(\frac{1}{A\varepsilon^{n-1}}\bigg)
\varepsilon^{n-1}\,d\varepsilon\cr
{}+\frac{1}{n|B_{\|\cdot\|}(0,1)|}\int_{T}\varphi\bigg(\frac{1}{B}\,\|\nabla
f(u)\|_{\ast}\bigg)\,du\bigg),
\cr}$$
where $|\cdot|$ is the Lebesgue measure on $\mathbb R^n$.
This is a strengthening of the Sobolev inequality obtained by
M. Talagrand. We use this
inequality to state, for a given concave, strictly increasing function
$\eta:\mathbb R_{+} \rightarrow \mathbb R$ with $\eta(0) = 0$, a necessary and sufficient
condition on $\varphi$ so that each separable
process $X(t)$, $t\in T$, which satisfies
$$
\|X(s)-X(t)\|_{\varphi}\leq \eta(\|s-t\|)\quad\ \hbox{for}\ s,t\in T
$$
is a.s. sample bounded.
Keywords:
assume cdot norm mathbb cdot ast its dual consider closed ball cdot suppose varphi orlicz function psi its conjugate prove arbitrary each lipschitz function eqalign sup f leq bigg int psi bigg frac varepsilon n bigg varepsilon n varepsilon frac cdot int varphi bigg frac nabla ast bigg bigg where cdot lebesgue measure mathbb strengthening sobolev inequality obtained nbsp talagrand inequality state given concave strictly increasing function eta mathbb rightarrow mathbb eta necessary sufficient condition varphi each separable process which satisfies x varphi leq eta s t quad hbox sample bounded
Affiliations des auteurs :
Witold Bednorz  1
@article{10_4064_sm176_2_2,
author = {Witold Bednorz},
title = {On a {Sobolev} type inequality and its applications},
journal = {Studia Mathematica},
pages = {113--137},
year = {2006},
volume = {176},
number = {2},
doi = {10.4064/sm176-2-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm176-2-2/}
}
Witold Bednorz. On a Sobolev type inequality and its applications. Studia Mathematica, Tome 176 (2006) no. 2, pp. 113-137. doi: 10.4064/sm176-2-2
Cité par Sources :