On a Sobolev type inequality and its applications
Studia Mathematica, Tome 176 (2006) no. 2, pp. 113-137

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Assume $\|\cdot\|$ is a norm on $\mathbb R^n$ and $\|\cdot\|_{\ast}$ its dual. Consider the closed ball $T:=B_{\|\cdot\|}(0,r)$, $r>0$. Suppose $\varphi$ is an Orlicz function and $\psi$ its conjugate. We prove that for arbitrary $A,B>0$ and for each Lipschitz function $f$ on $T$, $$\eqalign{ \sup_{s,t\in T}|f(s)-f(t)|\leq{} 6AB\bigg(\int^r_{0}\psi\bigg(\frac{1}{A\varepsilon^{n-1}}\bigg) \varepsilon^{n-1}\,d\varepsilon\cr {}+\frac{1}{n|B_{\|\cdot\|}(0,1)|}\int_{T}\varphi\bigg(\frac{1}{B}\,\|\nabla f(u)\|_{\ast}\bigg)\,du\bigg), \cr}$$ where $|\cdot|$ is the Lebesgue measure on $\mathbb R^n$. This is a strengthening of the Sobolev inequality obtained by M. Talagrand. We use this inequality to state, for a given concave, strictly increasing function $\eta:\mathbb R_{+} \rightarrow \mathbb R$ with $\eta(0) = 0$, a necessary and sufficient condition on $\varphi$ so that each separable process $X(t)$, $t\in T$, which satisfies $$ \|X(s)-X(t)\|_{\varphi}\leq \eta(\|s-t\|)\quad\ \hbox{for}\ s,t\in T $$ is a.s. sample bounded.
DOI : 10.4064/sm176-2-2
Keywords: assume cdot norm mathbb cdot ast its dual consider closed ball cdot suppose varphi orlicz function psi its conjugate prove arbitrary each lipschitz function eqalign sup f leq bigg int psi bigg frac varepsilon n bigg varepsilon n varepsilon frac cdot int varphi bigg frac nabla ast bigg bigg where cdot lebesgue measure mathbb strengthening sobolev inequality obtained nbsp talagrand inequality state given concave strictly increasing function eta mathbb rightarrow mathbb eta necessary sufficient condition varphi each separable process which satisfies x varphi leq eta s t quad hbox sample bounded

Witold Bednorz 1

1 Department of Mathematics University of Warsaw Banacha 2 02-097 Warszawa, Poland
@article{10_4064_sm176_2_2,
     author = {Witold Bednorz},
     title = {On a {Sobolev} type inequality and its applications},
     journal = {Studia Mathematica},
     pages = {113--137},
     publisher = {mathdoc},
     volume = {176},
     number = {2},
     year = {2006},
     doi = {10.4064/sm176-2-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm176-2-2/}
}
TY  - JOUR
AU  - Witold Bednorz
TI  - On a Sobolev type inequality and its applications
JO  - Studia Mathematica
PY  - 2006
SP  - 113
EP  - 137
VL  - 176
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm176-2-2/
DO  - 10.4064/sm176-2-2
LA  - en
ID  - 10_4064_sm176_2_2
ER  - 
%0 Journal Article
%A Witold Bednorz
%T On a Sobolev type inequality and its applications
%J Studia Mathematica
%D 2006
%P 113-137
%V 176
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm176-2-2/
%R 10.4064/sm176-2-2
%G en
%F 10_4064_sm176_2_2
Witold Bednorz. On a Sobolev type inequality and its applications. Studia Mathematica, Tome 176 (2006) no. 2, pp. 113-137. doi: 10.4064/sm176-2-2

Cité par Sources :