Maximal regularity of delay equations in Banach spaces
Studia Mathematica, Tome 175 (2006) no. 1, pp. 91-102

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We characterize existence and uniqueness of solutions for an inhomogeneous abstract delay equation in Hölder spaces. The main tool is the theory of operator-valued Fourier multipliers.
DOI : 10.4064/sm175-1-6
Keywords: characterize existence uniqueness solutions inhomogeneous abstract delay equation lder spaces main tool theory operator valued fourier multipliers

Carlos Lizama 1 ; Verónica Poblete 1

1 Departamento de Matemática Facultad de Ciencias Universidad de Santiago de Chile Casilla 307, Correo 2 Santiago, Chile
@article{10_4064_sm175_1_6,
     author = {Carlos Lizama and Ver\'onica Poblete},
     title = {Maximal regularity of delay equations
 in {Banach} spaces},
     journal = {Studia Mathematica},
     pages = {91--102},
     publisher = {mathdoc},
     volume = {175},
     number = {1},
     year = {2006},
     doi = {10.4064/sm175-1-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm175-1-6/}
}
TY  - JOUR
AU  - Carlos Lizama
AU  - Verónica Poblete
TI  - Maximal regularity of delay equations
 in Banach spaces
JO  - Studia Mathematica
PY  - 2006
SP  - 91
EP  - 102
VL  - 175
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm175-1-6/
DO  - 10.4064/sm175-1-6
LA  - en
ID  - 10_4064_sm175_1_6
ER  - 
%0 Journal Article
%A Carlos Lizama
%A Verónica Poblete
%T Maximal regularity of delay equations
 in Banach spaces
%J Studia Mathematica
%D 2006
%P 91-102
%V 175
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm175-1-6/
%R 10.4064/sm175-1-6
%G en
%F 10_4064_sm175_1_6
Carlos Lizama; Verónica Poblete. Maximal regularity of delay equations
 in Banach spaces. Studia Mathematica, Tome 175 (2006) no. 1, pp. 91-102. doi: 10.4064/sm175-1-6

Cité par Sources :