Maximal regularity of delay equations
in Banach spaces
Studia Mathematica, Tome 175 (2006) no. 1, pp. 91-102
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We characterize existence and uniqueness of solutions for an inhomogeneous abstract delay equation in Hölder spaces. The main tool is the theory of operator-valued Fourier multipliers.
Keywords:
characterize existence uniqueness solutions inhomogeneous abstract delay equation lder spaces main tool theory operator valued fourier multipliers
Affiliations des auteurs :
Carlos Lizama 1 ; Verónica Poblete 1
@article{10_4064_sm175_1_6,
author = {Carlos Lizama and Ver\'onica Poblete},
title = {Maximal regularity of delay equations
in {Banach} spaces},
journal = {Studia Mathematica},
pages = {91--102},
publisher = {mathdoc},
volume = {175},
number = {1},
year = {2006},
doi = {10.4064/sm175-1-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm175-1-6/}
}
TY - JOUR AU - Carlos Lizama AU - Verónica Poblete TI - Maximal regularity of delay equations in Banach spaces JO - Studia Mathematica PY - 2006 SP - 91 EP - 102 VL - 175 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm175-1-6/ DO - 10.4064/sm175-1-6 LA - en ID - 10_4064_sm175_1_6 ER -
Carlos Lizama; Verónica Poblete. Maximal regularity of delay equations in Banach spaces. Studia Mathematica, Tome 175 (2006) no. 1, pp. 91-102. doi: 10.4064/sm175-1-6
Cité par Sources :