Let $\tau$ be the first hitting time of the point $1$
by the geometric Brownian motion
$X(t)= x \exp(B(t)-2\mu t)$ with drift $\mu \geq 0$ starting from $x>1$.
Here $B(t)$ is the Brownian motion starting from $0$ with $E B^2(t) = 2t$.
We provide an integral formula for the density function
of the stopped exponential
functional $A(\tau)=\int_0^\tau X^2(t)\, dt$ and determine
its asymptotic behaviour at infinity. Although we basically rely
on methods developed
in \cite{BGS}, the present paper covers the case of arbitrary drifts
$\mu \geq 0$ and
provides a significant unification and extension of the results
of the above-mentioned paper.
As a corollary we provide an integral formula and
give the asymptotic behaviour at infinity of the Poisson kernel for half-spaces
for Brownian motion with drift in real hyperbolic spaces
of arbitrary dimension.
Keywords:
tau first hitting time point geometric brownian motion exp drift geq starting here brownian motion starting provide integral formula density function stopped exponential functional tau int tau determine its asymptotic behaviour infinity although basically rely methods developed cite bgs present paper covers arbitrary drifts geq provides significant unification extension results above mentioned paper corollary provide integral formula asymptotic behaviour infinity poisson kernel half spaces brownian motion drift real hyperbolic spaces arbitrary dimension
Affiliations des auteurs :
T. Byczkowski 
1
;
M. Ryznar 
1
1
Institute of Mathematics and Informatics Wrocław University of Technology Wybrzeże Wyspiańskiego 27 50-370 Wrocław, Poland
@article{10_4064_sm173_1_2,
author = {T. Byczkowski and M. Ryznar},
title = {Hitting distributions of geometric {Brownian} motion},
journal = {Studia Mathematica},
pages = {19--38},
year = {2006},
volume = {173},
number = {1},
doi = {10.4064/sm173-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm173-1-2/}
}
TY - JOUR
AU - T. Byczkowski
AU - M. Ryznar
TI - Hitting distributions of geometric Brownian motion
JO - Studia Mathematica
PY - 2006
SP - 19
EP - 38
VL - 173
IS - 1
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm173-1-2/
DO - 10.4064/sm173-1-2
LA - en
ID - 10_4064_sm173_1_2
ER -
%0 Journal Article
%A T. Byczkowski
%A M. Ryznar
%T Hitting distributions of geometric Brownian motion
%J Studia Mathematica
%D 2006
%P 19-38
%V 173
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm173-1-2/
%R 10.4064/sm173-1-2
%G en
%F 10_4064_sm173_1_2
T. Byczkowski; M. Ryznar. Hitting distributions of geometric Brownian motion. Studia Mathematica, Tome 173 (2006) no. 1, pp. 19-38. doi: 10.4064/sm173-1-2