Quasi *-algebras of measurable operators
Studia Mathematica, Tome 172 (2006) no. 3, pp. 289-305

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Non-commutative $L^p$-spaces are shown to constitute examples of a class of Banach quasi $^*$-algebras called $CQ^*$-algebras. For $p\geq 2$ they are also proved to possess a sufficient family of bounded positive sesquilinear forms with certain invariance properties. $CQ^*$-algebras of measurable operators over a finite von Neumann algebra are also constructed and it is proven that any abstract $CQ^*$-algebra $(\mathfrak X,{\cal A}_0)$ with a sufficient family of bounded positive tracial sesquilinear forms can be represented as a $CQ^*$-algebra of this type.
DOI : 10.4064/sm172-3-6
Keywords: non commutative p spaces shown constitute examples class banach quasi * algebras called * algebras geq proved possess sufficient family bounded positive sesquilinear forms certain invariance properties * algebras measurable operators finite von neumann algebra constructed proven abstract * algebra mathfrak cal sufficient family bounded positive tracial sesquilinear forms represented * algebra type

Fabio Bagarello 1 ; Camillo Trapani 2 ; Salvatore Triolo 2

1 Dipartimento di Metodi e Modelli Matematici Università di Palermo I-90128 Palermo, Italy
2 Dipartimento di Matematica ed Applicazioni Università di Palermo I-90123 Palermo, Italy
@article{10_4064_sm172_3_6,
     author = {Fabio Bagarello and Camillo Trapani and Salvatore Triolo},
     title = {Quasi *-algebras of measurable operators},
     journal = {Studia Mathematica},
     pages = {289--305},
     publisher = {mathdoc},
     volume = {172},
     number = {3},
     year = {2006},
     doi = {10.4064/sm172-3-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm172-3-6/}
}
TY  - JOUR
AU  - Fabio Bagarello
AU  - Camillo Trapani
AU  - Salvatore Triolo
TI  - Quasi *-algebras of measurable operators
JO  - Studia Mathematica
PY  - 2006
SP  - 289
EP  - 305
VL  - 172
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm172-3-6/
DO  - 10.4064/sm172-3-6
LA  - en
ID  - 10_4064_sm172_3_6
ER  - 
%0 Journal Article
%A Fabio Bagarello
%A Camillo Trapani
%A Salvatore Triolo
%T Quasi *-algebras of measurable operators
%J Studia Mathematica
%D 2006
%P 289-305
%V 172
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm172-3-6/
%R 10.4064/sm172-3-6
%G en
%F 10_4064_sm172_3_6
Fabio Bagarello; Camillo Trapani; Salvatore Triolo. Quasi *-algebras of measurable operators. Studia Mathematica, Tome 172 (2006) no. 3, pp. 289-305. doi: 10.4064/sm172-3-6

Cité par Sources :