1Dipartimento di Metodi e Modelli Matematici Università di Palermo I-90128 Palermo, Italy 2Dipartimento di Matematica ed Applicazioni Università di Palermo I-90123 Palermo, Italy
Studia Mathematica, Tome 172 (2006) no. 3, pp. 289-305
Non-commutative $L^p$-spaces are shown to constitute examples of a class
of Banach quasi $^*$-algebras called $CQ^*$-algebras. For $p\geq 2$ they
are also proved to possess a sufficient family of bounded
positive sesquilinear forms with certain invariance
properties. $CQ^*$-algebras of measurable operators over a finite
von Neumann algebra are also constructed and it is proven that
any abstract $CQ^*$-algebra $(\mathfrak X,{\cal A}_0)$ with a sufficient family
of bounded positive tracial sesquilinear forms can be represented
as a $CQ^*$-algebra of this type.
Keywords:
non commutative p spaces shown constitute examples class banach quasi * algebras called * algebras geq proved possess sufficient family bounded positive sesquilinear forms certain invariance properties * algebras measurable operators finite von neumann algebra constructed proven abstract * algebra mathfrak cal sufficient family bounded positive tracial sesquilinear forms represented * algebra type
1
Dipartimento di Metodi e Modelli Matematici Università di Palermo I-90128 Palermo, Italy
2
Dipartimento di Matematica ed Applicazioni Università di Palermo I-90123 Palermo, Italy
@article{10_4064_sm172_3_6,
author = {Fabio Bagarello and Camillo Trapani and Salvatore Triolo},
title = {Quasi *-algebras of measurable operators},
journal = {Studia Mathematica},
pages = {289--305},
year = {2006},
volume = {172},
number = {3},
doi = {10.4064/sm172-3-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm172-3-6/}
}
TY - JOUR
AU - Fabio Bagarello
AU - Camillo Trapani
AU - Salvatore Triolo
TI - Quasi *-algebras of measurable operators
JO - Studia Mathematica
PY - 2006
SP - 289
EP - 305
VL - 172
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm172-3-6/
DO - 10.4064/sm172-3-6
LA - en
ID - 10_4064_sm172_3_6
ER -
%0 Journal Article
%A Fabio Bagarello
%A Camillo Trapani
%A Salvatore Triolo
%T Quasi *-algebras of measurable operators
%J Studia Mathematica
%D 2006
%P 289-305
%V 172
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm172-3-6/
%R 10.4064/sm172-3-6
%G en
%F 10_4064_sm172_3_6
Fabio Bagarello; Camillo Trapani; Salvatore Triolo. Quasi *-algebras of measurable operators. Studia Mathematica, Tome 172 (2006) no. 3, pp. 289-305. doi: 10.4064/sm172-3-6