Quasi *-algebras of measurable operators
Studia Mathematica, Tome 172 (2006) no. 3, pp. 289-305
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Non-commutative $L^p$-spaces are shown to constitute examples of a class
of Banach quasi $^*$-algebras called $CQ^*$-algebras. For $p\geq 2$ they
are also proved to possess a sufficient family of bounded
positive sesquilinear forms with certain invariance
properties. $CQ^*$-algebras of measurable operators over a finite
von Neumann algebra are also constructed and it is proven that
any abstract $CQ^*$-algebra $(\mathfrak X,{\cal A}_0)$ with a sufficient family
of bounded positive tracial sesquilinear forms can be represented
as a $CQ^*$-algebra of this type.
Keywords:
non commutative p spaces shown constitute examples class banach quasi * algebras called * algebras geq proved possess sufficient family bounded positive sesquilinear forms certain invariance properties * algebras measurable operators finite von neumann algebra constructed proven abstract * algebra mathfrak cal sufficient family bounded positive tracial sesquilinear forms represented * algebra type
Affiliations des auteurs :
Fabio Bagarello 1 ; Camillo Trapani 2 ; Salvatore Triolo 2
@article{10_4064_sm172_3_6,
author = {Fabio Bagarello and Camillo Trapani and Salvatore Triolo},
title = {Quasi *-algebras of measurable operators},
journal = {Studia Mathematica},
pages = {289--305},
publisher = {mathdoc},
volume = {172},
number = {3},
year = {2006},
doi = {10.4064/sm172-3-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm172-3-6/}
}
TY - JOUR AU - Fabio Bagarello AU - Camillo Trapani AU - Salvatore Triolo TI - Quasi *-algebras of measurable operators JO - Studia Mathematica PY - 2006 SP - 289 EP - 305 VL - 172 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm172-3-6/ DO - 10.4064/sm172-3-6 LA - en ID - 10_4064_sm172_3_6 ER -
Fabio Bagarello; Camillo Trapani; Salvatore Triolo. Quasi *-algebras of measurable operators. Studia Mathematica, Tome 172 (2006) no. 3, pp. 289-305. doi: 10.4064/sm172-3-6
Cité par Sources :